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Canonical quantization in curved spacetime (review)

L space of germs of solutions of the equations of motion (a real
vector space). LC complexification.
𝜔 : L × L → R symplectic form – a bilinear antisymmetric form

Define sesquilinear form (𝜙, 𝜙′) := 4i𝜔(𝜙, 𝜙′)
A quantization is determined by a complete set of “positive
energy” modes {uk}k∈I:

(uk, ul) = 𝛿k,l, (uk, ul) = −𝛿k,l, (uk, ul) = 0, ∀k, l ∈ I.

L+ ⊆ LC, L− ⊆ LC subspaces generated by the modes uk, uk.
Have LC = L+ ⊕ L− and L− = L+.
postulate corresponding creation and annihilation operators:

[ak, al] = 0, [a†k , a
†
l ] = 0, [ak, a†l ] = 𝛿k,l.

This determines the state spaceH as a Fock space.



Positive-definite Lagrangian subspaces
Choice of vacuum corresponds to choice of
positive-definite Lagrangian subspace L+:

1 L+ ⊆ LC is Lagrangian subspace
2 L+ is positive-definite with respect to (·, ·)

{uk}k∈I is just an ON-basis of L+.
Lagrangianmeans

isotropic, i.e., 𝜔(𝜙, 𝜂) = 0, ∀𝜙, 𝜂 ∈ L+,
and coisotropic, i.e., 𝜔(𝜙, 𝜂) = 0, ∀𝜙 ∈ L+ =⇒ 𝜂 ∈ L+

L+ has a complement L− := L+, a negative-definite Lagrangian
subspace. Let J be the operator with eigenspaces L+ and L− and
eigenvalues i and −i. Then, J defines a complex structure on L with
respect to which

{𝜙, 𝜂} := (𝜙+, 𝜂+) = g(𝜙, 𝜂) + 2i𝜔(𝜙, 𝜂), g(𝜙, 𝜂) := 2𝜔(𝜙, J𝜂)

is a positive-definite inner product on (L, J).



Extended classical axioms
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The classical axioms extend to general non-compact regions.
For compact regions LM ⊆ LC

𝜕M is the complexification of a real
Lagrangian subspace.
For non-compact regions LM ⊆ LC

𝜕M is a general complex
Lagrangian subspace.

[D. Colosi, RO 2019]



Holomorphic quantization: State spaces

In textbook QFT, the state space (H , ⟨·, ·⟩) is usually taken as the Fock
space over the Hilbert space (L, {·, ·}). Another possibility we have
seen is the Schrödinger representation.
Here, we construct (H , ⟨·, ·⟩) as the space of square-integrable
holomorphic functions on Lwith respect to a Gaussian measure 𝜈.
This is the holomorphic representation.

⟨𝜓′, 𝜓⟩ :=
∫
L̂
𝜓′(𝜙)𝜓(𝜙) d𝜈(𝜙),

where 𝜈 is the Gaussian measure, with,

d𝜈(𝜙) ≈ exp
(
−12ℜ{𝜙, 𝜙}

)
d𝜇(𝜙).



Coherent States

The Hilbert space H is a reproducing kernel Hilbert space and
contains coherent states of the form

K𝜉 (𝜙) = exp
(
1
2 {𝜉, 𝜙}

)
associated to germs of solutions 𝜉 ∈ L. They have the reproducing
property,

⟨K𝜉 , 𝜓⟩ = 𝜓(𝜉),

and satisfy the completeness relation

⟨𝜓′, 𝜓⟩ =
∫
L̂
⟨𝜓′,K𝜉 ⟩⟨K𝜉 , 𝜓⟩ d𝜈(𝜉).

They can be thought of as representing quantum states that
approximate specific classical solutions.



Amplitudes

Consider a spacetime regionM. Let LM be the space of solutions inM.
There is a map LM → L𝜕M. Denote the image by LM̃.
Recall that LM̃ ⊆ L𝜕M is a Lagrangian subspace. Then,

L𝜕M = LM̃ ⊕ J𝜕MLM̃, orthogonal with respect to g𝜕M.

Write 𝜉 = 𝜉R + 𝜉I. Then, (k𝜉 normalized version of K𝜉) [RO 2010]

𝜌M(k𝜉 ) = exp
(
−i𝜔𝜕M(𝜉R, 𝜉I) − 1

2g𝜕M(𝜉I, 𝜉I)
)
.
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