$BF\xspace$ Theory and Spinfoam Models

Max Dohse

Literature:

talk closely follows J. Baez' paper:

An Introduction to Spin Foam Models of BF Theory and Quantum Gravity [arxiv:gr-qc/9905087]

plus sections 1.1-1.6, 5.1 and 7.2 of R. Oeckl's book:

Discrete Gauge Theory, Imperial College Press, 2005

helpful publications also consulted:

- J. Baez: Spin Foam Models [arxiv:gr-qc/9709052]
- D. Oriti: Spacetime Geometry from Algebra: Spin Foam Models for non-perturbative Quantum Gravity [arxiv:gr-qc/0106091]
- A. Perez: Introduction to Loop Quantum Gravity and Spin Foams [arxiv:gr-qc/0409061]

- Classical field equations
- 2 Classical phase space
- Canonical quantization
- Observables
- Path integral quantization
- 6 Spinfoams
- Transition amplitudes
- 8 4-dim. Quantum Gravity
- Onclusions

Classical field equations

- Classical phase space
- Canonical quantization
- Observables
- Path integral quantization
- 6 Spinfoams
- Transition amplitudes
- 4-dim. Quantum Gravity
- Onclusions

- gauge group: Lie group G, with Lie algebra g equipped with invariant nondegenerate bilinear form ⟨·, ·⟩_a
- ${\ensuremath{\,\circ\,}}$ spacetime: smooth, oriented manifold M
- choose principal *G*-bundle $P \xrightarrow{\pi} M$, vector bundle associated to $P \xrightarrow{\pi} M$ via adjoint action of *G* on g is $\operatorname{ad}(P) \xrightarrow{\pi_a} M$ with $\operatorname{ad}(P) = (P \times \operatorname{Ad}(G))/G$ and $\operatorname{Ad}(G)$ the adjoint representation of *G*

- gauge group: Lie group G, with Lie algebra g equipped with invariant nondegenerate bilinear form ⟨·, ·⟩_a
- ${\ensuremath{\,\circ\,}}$ spacetime: smooth, oriented manifold M
- choose principal *G*-bundle $P \xrightarrow{\pi} M$, vector bundle associated to $P \xrightarrow{\pi} M$ via adjoint action of *G* on g is $\operatorname{ad}(P) \xrightarrow{\pi_a} M$ with $\operatorname{ad}(P) = (P \times \operatorname{Ad}(G))/G$ and $\operatorname{Ad}(G)$ the adjoint representation of *G*
- basic fields of theory:

A= connection on P $F=dA+A\wedge A$ is curvature of A: an ${\rm ad}(P){\rm -valued}$ 2-form on M $E={\rm ad}(P){\rm -valued}$ $(n{-}2){\rm -form}$ on M

- gauge group: Lie group G, with Lie algebra g equipped with invariant nondegenerate bilinear form ⟨·, ·⟩_a
- ${\ensuremath{\,\circ\,}}$ spacetime: smooth, oriented manifold M
- choose principal *G*-bundle $P \xrightarrow{\pi} M$, vector bundle associated to $P \xrightarrow{\pi} M$ via adjoint action of *G* on g is $\operatorname{ad}(P) \xrightarrow{\pi_a} M$ with $\operatorname{ad}(P) = (P \times \operatorname{Ad}(G))/G$ and $\operatorname{Ad}(G)$ the adjoint representation of *G*
- basic fields of theory:

A= connection on P $F=dA+A\wedge A$ is curvature of A: an ${\rm ad}(P){\rm -valued}$ 2-form on M $E={\rm ad}(P){\rm -valued}$ $(n{-}2){\rm -form}$ on M

• pick local trivialization, can think of A, F, E as g-valued 1,2,(n - 2)-forms on M, with local coordinates $\{x^j\}$ on M and basis $\{e_m\}$ of $\mathfrak{g} \cong T_1G$ we can write

$$\begin{split} A &= A_a^m \, dx^a \otimes e_m \\ F &= F_{b_1,b_2}^l \, dx^{b_1} \wedge dx^{b_2} \otimes e_l \\ E &= E_{j_1,\dots,j_{n-2}}^k \, dx^{j_1} \wedge \dots \wedge dx^{j_{n-2}} \otimes e_k \end{split}$$

• Lagrangian of BF theory: $\mathcal{L} = \text{Tr} (E \wedge F)$

 $\mathsf{Tr}\;(E\wedge F) \text{ is }n\text{-form constructed by taking wedge product of form parts of }E \text{ and }F \text{ and }using \text{ bilinear form }\langle \,\cdot\,,\,\,\cdot\,\rangle_{\mathfrak{g}} \text{ to pair }\mathfrak{g}\text{-valued parts}$

$$\mathsf{Tr} \left(E \wedge F \right) \,=\, E^k_{j_1, \dots, j_{n-2}} \, F^l_{b_1, b_2} \, \left\langle e_k, e_l \right\rangle_{\mathfrak{g}} \, dx^{j_1} \wedge \dots \wedge dx^{j_{n-2}} \, \wedge \, dx^{b_1} \wedge dx^{b_2}$$

• Lagrangian of BF theory: $\mathcal{L} = \mathsf{Tr} (E \wedge F)$

Tr $(E \wedge F)$ is *n*-form constructed by taking wedge product of form parts of E and F and using bilinear form $\langle \cdot, \cdot \rangle_{\mathfrak{g}}$ to pair g-valued parts

$$\mathsf{Tr}\;(E \wedge F) \,=\, E^k_{j_1,\ldots,j_{n-2}}\; F^l_{b_1,b_2}\; \langle e_k,\, e_l\rangle_{\mathfrak{g}}\; dx^{j_1} \wedge \ldots \wedge dx^{j_{n-2}}\; \wedge \; dx^{b_1} \wedge dx^{b_2}$$

- field equations: F = 0 $d_A E = 0$ $d_A E = 0$
- locally: all solutions of BF theory equal modulo gauge transformations: BF theory is a topological field theory

• Lagrangian of BF theory: $\mathcal{L} = \mathsf{Tr} (E \wedge F)$

Tr $(E \wedge F)$ is *n*-form constructed by taking wedge product of form parts of E and F and using bilinear form $\langle \cdot, \cdot \rangle_{\mathfrak{g}}$ to pair g-valued parts

$$\mathsf{Tr} \ (E \wedge F) \ = \ E^k_{j_1, \dots, j_{n-2}} \ F^l_{b_1, b_2} \ \langle e_k, e_l \rangle_{\mathfrak{g}} \ dx^{j_1} \wedge \dots \wedge dx^{j_{n-2}} \ \wedge \ dx^{b_1} \wedge dx^{b_2}$$

- field equations: F = 0 $d_A E = 0$ $d_A E = 0$
- locally: all solutions of BF theory equal modulo gauge transformations: BF theory is a topological field theory
- BF-action invariant under E gauge: $E \mapsto E + d_A \eta$ for some g-valued (n-3)-form η
- since A flat, for any E with $d_A E = 0$ there exists an η such that locally $E = d_A \eta$ since locally all closed forms are exact

- 3d-GR is special case of BF theory: n=3 and $G={\rm SO}(2,1)$ $\langle \cdot\,,\,\cdot\,\rangle_{{\rm so}(2,1)}$ is minus its Killling form
- if 1-form $E: TM \to ad(P)$ is bijective, then nondegenerate Lorentzian metric defined by $g(x)(v,w) \stackrel{\text{def.}}{=} \langle E(x)v, E(x)w \rangle_{so(2,1)} \quad \forall v, w \in T_xM$

- 3d-GR is special case of BF theory: n=3 and $G={\rm SO}(2,1)$ $\langle \cdot\,,\,\cdot\,\rangle_{{\rm so}(2,1)}$ is minus its Killling form
- if 1-form $E: TM \to ad(P)$ is bijective, then nondegenerate Lorentzian metric defined by $g(x)(v,w) \stackrel{\text{def.}}{=} \langle E(x)v, E(x)w \rangle_{so(2,1)} \quad \forall v, w \in T_xM$
- \bullet can pull back connection A to flat Levi-Civita connection on TM, thus metric g flat
- in 3d spacetime vacuum Einstein equations just say: metric is flat

- 3d-GR is special case of BF theory: n=3 and $G={\rm SO}(2,1)$ $\langle \cdot\,,\,\cdot\,\rangle_{{\rm so}(2,1)}$ is minus its Killling form
- if 1-form $E: TM \to ad(P)$ is bijective, then nondegenerate Lorentzian metric defined by $g(x)(v,w) \stackrel{\text{def.}}{=} \langle E(x)v, E(x)w \rangle_{so(2,1)} \quad \forall v, w \in T_xM$
- \bullet can pull back connection A to flat Levi-Civita connection on TM, thus metric g flat
- in 3d spacetime vacuum Einstein equations just say: metric is flat
- $\bullet\,$ many different A and E fields correspond to same metric, but all related by gauge transformations
- thus in 3d spacetime, BF theory with G = SO(2, 1) is alternate formulation of Lorentzian GR without matter fields
- with G = SO(3) we obtain Riemannian GR: much easier to quantize than Lorentzian GR

Classical field equations

- 2 Classical phase space
- Canonical quantization
- Observables
- 5 Path integral quantization
- 💿 Spinfoams
- Transition amplitudes
- 4-dim. Quantum Gravity
- Onclusions

- assume spacetime M is product $\mathbbm{R}_{\rm time}\times S$ S = smooth, oriented $(n{-}1){-}{\rm dim.}$ manifold representing space
- work in temporal gauge: time component of connection A vanishes

- assume spacetime M is product $\mathbb{R}_{time} \times S$
 - $S={\sf smooth}, {\sf oriented} \ (n-1){\sf -dim}.$ manifold representing space
- ${\ensuremath{\bullet}}$ work in temporal gauge: time component of connection A vanishes
- momentum canonically conjugate to A is: $\frac{\partial \mathcal{L}}{\partial \dot{A}} = E$

- \bullet assume spacetime M is product $\mathbbm{R}_{\text{time}}\times S$
 - S =smooth, oriented (n-1)-dim. manifold representing space
- \bullet work in temporal gauge: time component of connection A vanishes
- momentum canonically conjugate to A is: $\frac{\partial \mathcal{L}}{\partial \dot{A}} = E$
- before imposing constraints: configuration space of BF theory is infinite-dim. vector space A of connections on $P|_S$
- kinematical phase space is corresponding classical phase space: cotangent bundle $T^*\mathcal{A}$ point therein consists of connection A on $P|_S$ and $ad(P|_S)$ -valued (n-2)-form E on S

 \bullet assume spacetime M is product $\mathbbm{R}_{\text{time}}\times S$

S =smooth, oriented (n-1)-dim. manifold representing space

• work in temporal gauge: time component of connection A vanishes

• momentum canonically conjugate to A is: $\frac{\partial \mathcal{L}}{\partial \dot{A}} = E$

- before imposing constraints: configuration space of BF theory is infinite-dim. vector space A of connections on $P|_S$
- kinematical phase space is corresponding classical phase space: cotangent bundle $T^*\mathcal{A}$ point therein consists of connection A on $P|_S$ and $ad(P|_S)$ -valued (n-2)-form E on S
- field equations put constraints on initial data A and E on time-zero slice S: $0 = B = dA + A \land A$ $d_A E = 0$
- to deal with these constraints: apply symplectic reduction to kinematical phase space T*A to obtain physical phase space

- constraint $d_A E = 0$ called Gauss law, generates action of gauge transformations on $T^* \mathcal{A}$
- symplectic reduction with respect to Gauss constraint: gauge-invariant phase space T*(A/G)
 G = group of gauge transformations of bundle P|_S

- constraint $d_A E = 0$ called Gauss law, generates action of gauge transformations on $T^* \mathcal{A}$
- symplectic reduction with respect to Gauss constraint: gauge-invariant phase space T*(A/G)
 G = group of gauge transformations of bundle P|S
- no-curvature constraint B = 0 is special to BF theory, generates transformations of form $E \mapsto E + d_A \eta$ thus these transformations are really gauge symmetries as claimed before
- symplectic reduction with respect to no-curvature constraint: physical phase space $T^*(\mathcal{A}_0/\mathcal{G})$ \mathcal{A}_0 = space of flat connections on $P|_S$

- constraint $d_A E = 0$ called Gauss law, generates action of gauge transformations on $T^* \mathcal{A}$
- symplectic reduction with respect to Gauss constraint: gauge-invariant phase space T*(A/G)
 G = group of gauge transformations of bundle P|S
- no-curvature constraint B = 0 is special to BF theory, generates transformations of form $E \mapsto E + d_A \eta$ thus these transformations are really gauge symmetries as claimed before
- symplectic reduction with respect to no-curvature constraint: physical phase space $T^*(\mathcal{A}_0/\mathcal{G})$ \mathcal{A}_0 = space of flat connections on $P|_S$
- points in this physical phase space correspond to physical states of *classical* BF theory

Classical field equations

Classical phase space

3 Canonical quantization

- Observables
- Path integral quantization
- 💿 Spinfoams
- Transition amplitudes
- 4-dim. Quantum Gravity
- Onclusions

• assume gauge group G connected + compact, manifold S representing space real-analytic

- \bullet assume gauge group G connected + compact, manifold S representing space real-analytic
- $\mathsf{Fun}(\mathcal{A}) = \mathsf{algebra}$ of functionals on space of connections \mathcal{A} of form

$$\Psi_{f,\Gamma}[A] = f(\{h_{\gamma_k}[A] \mid \gamma_k \in \Gamma\}) \qquad h_{\gamma_k}[A] \stackrel{\text{def.}}{=} \mathcal{P} \exp \int_{\gamma_k} A$$

0

 \bullet assume gauge group G connected + compact, manifold S representing space real-analytic

• Fun(A) = algebra of functionals on space of connections A of form

$$\Psi_{f,\Gamma}[A] = f(\{h_{\gamma_k}[A] \mid \gamma_k \in \Gamma\}) \qquad h_{\gamma_k}[A] \stackrel{\text{def.}}{=} \mathcal{P} \exp \int_{\gamma_k} A$$

• define inner product on Fun(\mathcal{A}), complete it, obtain Hilbert space $\mathcal{H}_{kin} = L^2(\mathcal{A})$ $\langle \Psi_{f_1,\Gamma_1}, \Psi_{f_2,\Gamma_2} \rangle \stackrel{\text{def.}}{=} \int \left(\prod_r^{e_r \in \Gamma_{12}} dh_{e_r} \right) \overline{f_1(\{h_{\gamma_k}[A] \mid \frac{\gamma_k \in \Gamma_{12}}{\gamma_k \subseteq \widetilde{\gamma}_k \in \Gamma_1}\})} f_2(\{h_{\gamma_k}[A] \mid \frac{\gamma_k \in \Gamma_{12}}{\gamma_k \subseteq \widetilde{\gamma}_k \in \Gamma_2}\})$

 $\Gamma_1, \Gamma_2 \subseteq \Gamma_{12}$ and dh = normalized Haar measure of gauge group G

 finite collection of real-analytic paths γ_j: [0,1] → S = graph in S if they are embedded in S and intersect only at their endpoints (if at all), paths = edges and endpoints of paths = vertices, edge γ_j is outgoing from a vertex v if v = γ_j(0) and incoming to v if v = γ_j(1)

- finite collection of real-analytic paths γ_j: [0,1] → S = graph in S if they are embedded in S and intersect only at their endpoints (if at all), paths = edges and endpoints of paths = vertices, edge γ_j is outgoing from a vertex v if v = γ_j(0) and incoming to v if v = γ_j(1)
- (closed) spin network N = (Γ, ρ, ι) in S with symmetry group G is triple consisting of:
 graph Γ in S
 - 2) edge-labeling ρ of each edge e of Γ by an irrep ρ_e of G
 - **(3)** vertex-labeling ι of each vertex v of Γ by intertwiner ι_v :

$$\iota_v: \ \left(\rho_{e_1^{\mathsf{in}}(v)} \otimes \ldots \otimes \rho_{e_{n(v)}^{\mathsf{in}}(v)}\right) \ \rightarrow \ \left(\rho_{e_1^{\mathsf{out}}(v)} \otimes \ldots \otimes \rho_{e_{o(v)}^{\mathsf{out}}(v)}\right)$$

• Fun $(\mathcal{A}/\mathcal{G})$ = algebra of gauge-invariant functionals in Fun (\mathcal{A}) , completing in above norm yields gauge-invariant Hilbert space $\mathcal{H}_{gauge} = L^2(\mathcal{A}/\mathcal{G})$, this space is spanned by spin network states:

$$\Psi_N[A] \stackrel{\text{def.}}{=} \prod_r^{e_r \in N} \rho_{e_r} (h_{e_r}[A])_{\beta_r}^{\alpha_r} \prod_{j}^{v_j \in N} (\iota_{v_j})_{\alpha_{j_1} \dots \alpha_{j_o(j)}}^{\beta_{j_1} \dots \beta_{j_n(j)}}$$

 $\Psi_{N}[A] = \rho_{e_{1}}(h_{e_{1}}[A])^{\alpha_{1}}_{\beta_{1}} \ \rho_{e_{2}}(h_{e_{2}}[A])^{\alpha_{2}}_{\beta_{2}} \ \rho_{e_{3}}(h_{e_{3}}[A])^{\alpha_{3}}_{\beta_{3}} \ (\iota_{v_{1}})^{\beta_{2}}_{\alpha_{1}\alpha_{3}} \ (\iota_{v_{2}})^{\beta_{1}\beta_{3}}_{\alpha_{2}}$

- classically imposing no-curvature constraint yields physical phase space $T^*(\mathcal{A}_0/\mathcal{G})$, however in most cases no natural measure on $(\mathcal{A}_0/\mathcal{G})$, Hilbert space cannot be defined unambiguously
- have to accept mere vector space instead of Hilbert space, every functional in $\operatorname{Fun}(\mathcal{A}/\mathcal{G})$ restricts to one in $\operatorname{Fun}(\mathcal{A}_0/\mathcal{G})$, the space of gauge-invariant functionals on flat connections, call elements of this space **physical states**, even if there is no natural measure on $\mathcal{A}_0/\mathcal{G}$

- spin networks in S related through homotopy define same physical state, because holonomy of *flat* connection does not change under homotopies
- $\bullet\,$ reparametrize edge of spin network in $S\,$ by orientation-preserving diffeomorphism of unit interval

- spin networks in S related through homotopy define same physical state, because holonomy of *flat* connection does not change under homotopies
- reparametrize edge of spin network in S by orientation-preserving diffeomorphism of unit interval
- reverse orientation of an edge, while dualizing irrep and appropriately dualizing intertwiners at its vertices
- subdivide edge into two edges labeled by same irrep, inserting vertex with identity intertwiner
- erase edges labeled by trivial irrep

- Classical field equations
- Classical phase space
- Canonical quantization
- Observables
- Path integral quantization
- Spinfoams
- Transition amplitudes
- 4-dim. Quantum Gravity
- Onclusions

• true physical observables $\leftrightarrow \mathcal{H}_{phys}$, "observables" $\leftrightarrow \mathcal{H}_{gauge}$

- *true* physical observables $\leftrightarrow \mathcal{H}_{phys}$, "observables" $\leftrightarrow \mathcal{H}_{gauge}$
- Wilson loop = functional of form Tr $\rho(h_{\gamma}[A])$, spin network = generalization of Wilson loop:
- spin network N defines operator $\widehat{\Psi}_N[A]$ acting as multiplication by $\Psi_N[A]$ on elements of $\operatorname{Fun}(\mathcal{A}/\mathcal{G})$

- *true* physical observables $\leftrightarrow \mathcal{H}_{phys}$, "observables" $\leftrightarrow \mathcal{H}_{gauge}$
- Wilson loop = functional of form Tr $\rho(h_{\gamma}[A])$, spin network = generalization of Wilson loop:
- spin network N defines operator $\widehat{\Psi}_N[A]$ acting as multiplication by $\Psi_N[A]$ on elements of $\operatorname{Fun}(\mathcal{A}/\mathcal{G})$
- $\Psi_N[A] \in \operatorname{Fun}(\mathcal{A}/\mathcal{G})$ bounded $\Rightarrow \widehat{\Psi}_N[A] =$ bounded operator on $\mathcal{H}_{\text{gauge}} = L^2(\mathcal{A}/\mathcal{G})$ called spin network observable
- $\Psi_N[A] \in \operatorname{Fun}(\mathcal{A}_0/\mathcal{G})$ also bounded $\Rightarrow \widehat{\Psi}_N[A] =$ bounded operator on $\mathcal{H}_{\mathsf{phys}} = L^2(\mathcal{A}_0/\mathcal{G})$
- spin network observables on \mathcal{H}_{gauge} not invariant under homotopies of graph Γ of N, but spin network operators on \mathcal{H}_{phys} are invariant and satisfy skein relations
any product of Wilson loops = finite linear combination of spin network observables
example: one Wilson loop as spin network observable

$$(\mathbf{I}) \stackrel{\text{def.}}{=} \operatorname{Tr} \rho_0(h_W[A]) = (\mathbf{II}) = \rho_0(h_W[A])^{\alpha}_{\beta} \delta_{\alpha\beta}$$
$$= (\mathbf{III}) = \rho_0(h_{e_1}[A])^{\alpha_1}_{\beta_1} \rho_0(h_{e_2}[A])^{\alpha_2}_{\beta_2} \delta_{\alpha_1\beta_2} \delta_{\alpha_2\beta_1}$$
$$= \rho_0(h_{e_1}[A])^{\alpha_1}_{\alpha_2} \rho_0(h_{e_2}[A])^{\alpha_2}_{\alpha_1}$$
$$= \left(\rho_0(h_{e_1}[A]) \rho_0(h_{e_2}[A])\right)^{\alpha_1}_{\alpha_1}$$
$$= \left(\rho_0(h_W[A])\right)^{\alpha_1}_{\alpha_1}$$

• example: two Wilson loops as spin network observable

$$\begin{aligned} (\mathsf{IV}) &= \mathsf{Tr} \, \rho_1(h_{W_1}[A]) \cdot \mathsf{Tr} \, \rho_2(h_{W_2}[A]) \\ &= (\mathsf{V}) = \rho_1(h_{e_1}[A])_{\beta_1}^{\alpha_1} \, \rho_1(h_{e_2}[A])_{\beta_2}^{\alpha_2} \, \rho_2(h_{e_3}[A])_{\beta_3}^{\alpha_3} \, \rho_2(h_{e_4}[A])_{\beta_4}^{\alpha_4} \, \overleftarrow{\delta_{\alpha_2\beta_1} \, \delta_{\alpha_4\beta_3}} \, \overleftarrow{\delta_{\alpha_1\beta_2} \, \delta_{\alpha_3\beta_4}} \\ &= \left(\rho_1(h_{e_1}[A]) \, \rho_1(h_{e_2}[A])\right)_{\alpha_1}^{\alpha_1} \cdot \left(\rho_2(h_{e_3}[A]) \, \rho_2(h_{e_4}[A])\right)_{\alpha_3}^{\alpha_3} \\ &= \left(\rho_1(h_{W_1}[A]))\right)_{\alpha_1}^{\alpha_1} \cdot \left(\rho_2(h_{W_2}[A])\right)_{\alpha_3}^{\alpha_3} \end{aligned}$$

• G = U(1): gauge-inv. functional of E-field = integral over (n-2)-dim. submanifold Σ of S

 $\int_{\Sigma} E \qquad \text{but not gauge-invariant in nonabelian case}$

• G = U(1): gauge-inv. functional of E-field = integral over (n-2)-dim. submanifold Σ of S

$$\int_{\Sigma} E \qquad \text{but not gauge-invariant in nonabelian case}$$

• $e = \mathfrak{g}$ -valued function on Σ , $d^{n-2}x = (n-2)$ -form on $\Sigma \implies E|_{\Sigma} = e d^{n-2}x$ gauge-invariant functional of E provided by

$$E(\Sigma) \stackrel{\text{def.}}{=} \int_{\Sigma} \underbrace{d^{n-2}x \, \sqrt{\langle e, e \rangle_{\mathfrak{g}}}}_{|E|}$$

• quantizing $E(\Sigma)$ gives self-adjoint operator $\widehat{E}(\Sigma)$ on $\mathcal{H}_{gauge} = L^2(\mathcal{A}/\mathcal{G})$

• spin network N in space S intersects (n-2)-submanifold Σ in finitely many points:

•
$$\widehat{E}(\Sigma)$$
 acts on $\Psi_N \in \mathcal{H}_{\mathsf{gauge}} = L^2(\mathcal{A}/\mathcal{G})$ by

$$\widehat{E}(\Sigma) \Psi_N \;=\; \sum_k \sqrt{C(\rho_k)} \; \Psi_N$$

 $C(\rho_k) = \mathsf{Casimir} \text{ of irrep } \rho_k$

• physical significance of spin network edges: represent quantized flux lines of E-field

- 3-dim. BF theory with G = SU(2), SO(3) is formulation of 3-dim. Riemannian GR, $\widehat{E}(\Sigma)$ can be interpreted as length of curve Σ , in 4-dim. BF theory as area of surface Σ
- irreps of SU(2) correspond to spins $j = 0, \frac{1}{2}, 1, ...,$ Casimir of the spin-j irrep is $j(j+1)\mathbb{1}$, edge of spin j contributes length/area $\sqrt{j(j+1)}$ to any curve/surface it crosses
- consequence: length/area in 3/4-dim. Riemannian QG have discrete spectra
- application: blackhole entropy:

associate degrees of freedom of event horizon to points of intersection with spin networks, then derive Bekenstein-Hawking entropy proportional to area of event horizon

Outline

- Classical field equations
- Classical phase space
- Canonical quantization
- Observables
- Path integral quantization
- Spinfoams
- Transition amplitudes
- 4-dim. Quantum Gravity
- Onclusions

• quantization of BF theory via path integral: consider partition function

$$\mathcal{Z} = \int \mathcal{D}A \ \int \mathcal{D}E \ \exp \, i \int_{M} \mathrm{Tr} \ (E \wedge F)$$

- to give sense to this expression, introduce discretization, hope path integral becomes well defined
- define theory only on discrete, finite set of points in spacetime, which we call **vertices**, assume fields to vary slowly between vertices
- connection A, implemented in discrete version by considering parallel transports between vertices, need pathes connecting vertices along which parallel transport takes place, call pathes edges
- implement curvature in form of holonomies along closed loops formed by edges, specify loop by surface bounded by its edges, call surface **face**
- vertices, edges and faces together = lattice L on spacetime

• equip L with orientation, define discretized connection A on L by assigning group element g_e to each edge e

$$g_e = \mathcal{P} \exp{-\int_e A}$$

 measure on space of connections under discretization becomes product over Haar measure of all edges:

$$\mathcal{D}A \rightsquigarrow \prod_e dg_e$$

- ullet define discretized gauge transformation by assigning element h_v of G to each vertex v
- discretized curvature represented by group element g_f (defined up to conjugation)

$$g_f \stackrel{\text{def.}}{=} g_{e_1}^{o_1} \dots g_{e_k}^{o_k}$$

- \bullet under discretized gauge transformations g_f also transforms by conjugation
- thus gauge invariant information about curvature contained in conjugacy class of g_f , to obtain gauge-invariant Lagrangian, apply class function σ to g_f

• g_f expressed by approximately constant curvature 2-form F on f by

$$g_f \approx \exp(-a_f^2 F_{\mu\nu} + \mathcal{O}(a_f^4))$$

- \bullet face and dual face in one-to-one correspondence, can associate discretized field $\widetilde{E}=\star E$ to faces f
- $\bullet\,$ for action on M with slowly varying curvature we obtain

$$\begin{split} S &= \int_{M} \operatorname{Tr} \left(E \wedge F \right) = \int_{M} \operatorname{Tr} \left(\star \widetilde{E} \wedge F \right) \\ &\approx \sum_{C} a_{C}^{n} \sum_{(\mu,\nu)}^{C} \operatorname{Tr} \left(\widetilde{E}_{\mu\nu} F_{\mu\nu} \right) \\ &= \sum_{f} \operatorname{Tr} \left(\widetilde{E}_{\mu\nu}^{f} F_{\mu\nu}^{f} \right) a_{f}^{n-2} a_{f}^{2} \\ &= \sum_{f} \operatorname{Tr} \left(\widehat{E}_{\mu\nu}^{f} \underbrace{a_{f}^{2} F_{\mu\nu}^{f}}_{\widehat{F}_{\mu\nu}^{f}} \right) \\ & \widehat{F}_{\mu\nu}^{f} \end{split}$$

• in discretization, curvature $a_f^2 F_{\mu\nu}^f = \widehat{F}_{\mu\nu}^f$ on face f becomes group element g_f , thus linear function Tr $(\widehat{E}_{\mu\nu}^f \cdot)$ on Lie algebra \mathfrak{g} must become function on group G, make substitution

$$\exp i \mathrm{Tr} \; (\widehat{E}^f_{\mu\nu} \cdot) \; \rightsquigarrow \; \chi_{\rho_f}(\cdot)$$

- thus d.o.f. of *E*-field appear in discretized *BF* theory as representation valued d.o.f. attached to faces of lattice
- discretized version of exponentiated action:

$$\exp iS \rightsquigarrow \prod_f \chi_{\rho_f}(g_f)$$

 $\bullet\,$ now discretizing BF theory we naturally have arrived at a lattice setup which is just structure underlying spinfoams defined in next section

- partition function: $\mathcal{Z} = \int \mathcal{D}A \int \mathcal{D}E \exp i \int_{M} \operatorname{Tr} (E \wedge F)$
- for one face $f: \int d\widehat{E}^f_{\mu\nu} \exp i \text{Tr} (\widehat{E}^f_{\mu\nu} \widehat{F}^f_{\mu\nu}) = \delta(\widehat{F}^f_{\mu\nu})$
- discretization: delta function on Lie algebra becomes delta function on group

$$\delta(g_f) = \sum_{\rho_f} \chi_{\rho_f}(g_f) \dim \rho_f$$

all faces
$$\int \mathcal{D}E \exp i \int_{M} \operatorname{Tr} \left(E \wedge F \right) = \int \left(\prod_{f} d\widehat{E}_{\mu\nu}^{f} \right) \exp i \sum_{f} \operatorname{Tr} \left(\widehat{E}_{\mu\nu}^{f} \widehat{F}_{\mu\nu}^{f} \right)$$
$$= \prod_{f} \delta(\widehat{F}_{\mu\nu}^{f}) \rightsquigarrow \prod_{f} \delta(g_{f})$$

۲

۲

partition function:

$$\begin{aligned}
\mathcal{Z} &= \int \prod_{e} dg_{e} \prod_{f} \delta(g_{f}) \\
&= \int \prod_{e} dg_{e} \prod_{f} \sum_{\rho} \chi_{\rho}(g_{f}) \dim \rho \\
&= \int \prod_{e} dg_{e} \sum_{\{\rho_{f}\}} \prod_{f} \chi_{\rho_{f}}(g_{f}) \dim \rho_{f}
\end{aligned}$$

ullet character $\chi_\rho(g)$ is trace of matrix $t^\rho(g)$ derived from representation matrix via

$$\chi_{
ho}(g) = \operatorname{\mathsf{Tr}} t^{
ho}(g)$$

 $t^{
ho}_{ab}(g) = \langle \phi_a | \rho(g) | v_b
angle$

and

$$\begin{split} t^{\rho}(g_1g_2) \ &= \ t^{\rho}(g_1) \ t^{\rho}(g_2) \\ \chi_{\rho_f}(g_f) \ &= \ \mathrm{Tr} \ t^{\rho_f}(g_{e_1}^{o_1} \dots g_{e_k}^{o_k}) \ &= \ \mathrm{Tr} \ \left(t^{\rho_f}(g_{e_1}^{o_1}) \dots t^{\rho_f}(g_{e_k}^{o_k}) \right) \end{split}$$

circuit diagrams:

since

$$\begin{split} \prod_{f} \, \chi_{\rho_{f}}(g_{f}) \, &= \, \prod_{f} \, \operatorname{Tr} \left(t^{\rho_{f}}(g_{e_{1}}^{o_{1}}) \dots t^{\rho_{f}}(g_{e_{k}}^{o_{k}}) \right) \\ &= \, \prod_{f} \, \sum_{a_{1}, \dots, a_{k}} t_{a_{1}a_{2}}^{\rho_{f}}(g_{e_{1}}^{o_{1}}) \, t_{a_{2}a_{3}}^{\rho_{f}}(g_{e_{2}}^{o_{2}}) \dots t_{a_{k}a_{1}}^{\rho_{f}}(g_{e_{k}}^{o_{k}}) \end{split}$$

since

$$\begin{split} \prod_{f} \ \chi_{\rho_{f}}(g_{f}) \ &= \ \prod_{f} \ \operatorname{Tr} \left(t^{\rho_{f}}(g_{e_{1}}^{o_{1}}) \dots t^{\rho_{f}}(g_{e_{k}}^{o_{k}}) \right) \\ &= \ \prod_{f} \ \sum_{a_{1}, \dots, a_{k}} t^{\rho_{f}}_{a_{1}a_{2}}(g_{e_{1}}^{o_{1}}) t^{\rho_{f}}_{a_{2}a_{3}}(g_{e_{2}}^{o_{2}}) \dots t^{\rho_{f}}_{a_{k}a_{1}}(g_{e_{k}}^{o_{k}}) \end{split}$$

 $\int \prod_e dg_e \prod_f \chi_{\rho_f}(g_f)$

skein relation:

• value of vertex diagram at vertex v depends on irreps labeling incident faces and their orientations, and all intertwiners labeling incident edges, denote value of vertex diagram by

 $A_v(\{\rho_{f_v}\}, \{o_{f_v}\}, \{\iota_{e_v}\})$

• thus obtain for partition function

$$\begin{aligned} \mathcal{Z} &= \sum_{\{\rho_f\}} \left(\prod_f \dim \rho_f \right) \, \int \left(\prod_e dg_e \right) \left(\prod_f \chi_{\rho_f}(g_f) \right) \\ &= \sum_{\{\rho_f\}} \sum_{\{\iota_e\}} \left(\prod_f \dim \rho_f \right) \left(\prod_v A_v(\{\rho_{f_v}\}, \{o_{f_v}\}, \{\iota_{e_v}\}) \right) \end{aligned}$$

• discretizing BF theory we naturally have arrived at spinfoam defined in next section

• partition function is that of spinfoam model

Outline

- Classical field equations
- Classical phase space
- Canonical quantization
- Observables
- 5 Path integral quantization

6 Spinfoams

- Transition amplitudes
- 4-dim. Quantum Gravity
- Onclusions

• closed spinfoam $F = (\kappa, \rho, \iota)$ with symmetry group G is triple consisting of:

- oriented 2-complex κ ,
- 2 face-labeling ρ of each face f of κ by an irrep ρ_f of G and
- edge-labeling ι of each edge e of κ by intertwiner ι_e

$$\iota_e: \ \left(\rho_{f_1^{\mathsf{in}}(e)} \otimes \ldots \otimes \rho_{f_{n(e)}^{\mathsf{in}}(e)}\right) \ \rightarrow \ \left(\rho_{f_1^{\mathsf{out}}(e)} \otimes \ldots \otimes \rho_{f_{o(e)}^{\mathsf{out}}(e)}\right)$$

- spinfoam $(F = (\kappa, \tilde{\rho}, \tilde{\iota}))$: $\emptyset \to (N = (\Gamma, \rho, \iota))$ with symmetry group G connecting the empty spin network \emptyset with N is triple consisting of:
 - **(**) oriented 2-complex κ bordered by Γ ,
 - 2 face-labeling $\tilde{\rho}$ of each face f of κ by irrep $\tilde{\rho}_f$ of G and
 - **(**) edge-labeling $\tilde{\iota}$ of each edge e of κ not contained in Γ by intertwiner $\tilde{\iota}_e$

$$\widetilde{\iota}_e: \ \left(\rho_{f_1^{\mathsf{in}}(e)} \otimes \ldots \otimes \rho_{f_n^{\mathsf{in}}(e)}(e)\right) \ \to \ \left(\rho_{f_1^{\mathsf{out}}(e)} \otimes \ldots \otimes \rho_{f_{o(e)}^{\mathsf{out}}(e)}\right)$$

- $\label{eq:such that for any edge e of Γ if \widetilde{e} is incoming to e then $\widetilde{\rho}_{\widetilde{e}} = \rho_e$,} \\ \text{but if \widetilde{e} is outgoing from e then $\widetilde{\rho}_{\widetilde{e}} = {}^*\!\!\rho_e$ and }$
- **(**) for any vertex v of Γ after appropriate dualizations: $\tilde{\iota}_{\tilde{v}} = \iota_v$.

- dual spin network *N of N: same oriented 1-complex Γ, but each edge e labeled by dual irrep *p_e and each vertex v labeled by appropriately dualized version of intertwiner ι_v.
- tensor product $N^1 \otimes N^2$ of two spin networks $N^1 = (\Gamma^1, \rho^1, \iota^1)$ and $N^2 = (\Gamma^2, \rho^2, \iota^2)$: disjoint union of N^1 and N^2
- open spin foam is spinfoam $F: N^1 \to N^2$ connecting two nonempty spin networks N^1 and N^2 , defined to be $F: \emptyset \to (^*N^1 \times N^2)$.

in 4-dim. BF theory with gauge group SU(2):

- ⊕ spin network edges give area to surfaces they cross, since they are slices of spinfoam faces, these give area to surfaces they intersect
- ⊕ spin network vertices give 3-volume to regions of space they lie in, since they are slices of spinfoam edges, these give volume to 3-surfaces they cross
- $\oplus\,$ spinfoam vertices expected to give 4-volume to regions of spacetime they lie in, but computations not finished

Outline

- Classical field equations
- Classical phase space
- Canonical quantization
- Observables
- Bath integral quantization
- 6 Spinfoams
- Transition amplitudes
- 4-dim. Quantum Gravity
- Onclusions

- region of *n*-dim. spacetime: compact oriented cobordism $M_{12}: S_1 \to S_2$ with S_1, S_2 being (n-1)-dim. compact oriented manifolds representing space
- choose *n*-dim. triangulation Δ of spacetime M, induces (n-1)-dim. triangulations $\partial \Delta_1$ and $\partial \Delta_2$ on S_1, S_2 with dual 1-skeletons Γ_1, Γ_2

 \bullet connection on given graph $\Gamma:$ assign elements g of gauge group G to edges, space of such connections is \mathcal{A}_{Γ}

assignment can be thought of as representing parallel transport along edge γ , if graph were embedded in space with connection A,

$$g_{\gamma}[A] = h_{\gamma}[A] \stackrel{\text{def.}}{=} \mathcal{P} \exp \int_{\gamma} A$$

- \bullet connection on given graph $\Gamma:$ assign elements g of gauge group G to edges, space of such connections is \mathcal{A}_{Γ}
- gauge transformation on Γ : assign element of G to each vertex, group of these gauge transformations is \mathcal{G}_{Γ}
- $\mathcal{H}_{kin} = L^2(\mathcal{A}_{\Gamma})$ $\mathcal{H}_{gauge} = L^2(\mathcal{A}_{\Gamma}/\mathcal{G}_{\Gamma}),$

- \bullet connection on given graph $\Gamma:$ assign elements g of gauge group G to edges, space of such connections is \mathcal{A}_{Γ}
- gauge transformation on Γ : assign element of G to each vertex, group of these gauge transformations is \mathcal{G}_{Γ}
- $\mathcal{H}_{kin} = L^2(\mathcal{A}_{\Gamma})$ $\mathcal{H}_{gauge} = L^2(\mathcal{A}_{\Gamma}/\mathcal{G}_{\Gamma}),$
- ONB of $L^2(\mathcal{A}_{\Gamma}/\mathcal{G}_{\Gamma})$ formed by spin network states Ψ_N with $N = (\Gamma, \rho, \iota)$

- \bullet connection on given graph $\Gamma:$ assign elements g of gauge group G to edges, space of such connections is \mathcal{A}_{Γ}
- gauge transformation on Γ : assign element of G to each vertex, group of these gauge transformations is \mathcal{G}_{Γ}
- $\mathcal{H}_{kin} = L^2(\mathcal{A}_{\Gamma})$ $\mathcal{H}_{gauge} = L^2(\mathcal{A}_{\Gamma}/\mathcal{G}_{\Gamma}),$
- ONB of $L^2(\mathcal{A}_{\Gamma}/\mathcal{G}_{\Gamma})$ formed by spin network states Ψ_N with $N=(\Gamma,\rho,\iota)$
- if graph Γ embedded in space S, then trivializing G-bundle at vertices gives map from \mathcal{A} to \mathcal{A}_{Γ} and a homomorphism from \mathcal{G} to \mathcal{G}_{Γ} , thus

$$L^{2}(\mathcal{A}_{\Gamma}) \hookrightarrow L^{2}(\mathcal{A})$$
$$L^{2}(\mathcal{A}_{\Gamma}/\mathcal{G}_{\Gamma}) \hookrightarrow L^{2}(\mathcal{A}/\mathcal{G})$$

• use as gauge-invariant Hilbert spaces for S_1 and S_2 :

$$\begin{split} \mathcal{H}_{\mathsf{gauge}}^1 &= L^2(\mathcal{A}_{\Gamma_1}/\mathcal{G}_{\Gamma_1}) \\ \mathcal{H}_{\mathsf{gauge}}^2 &= L^2(\mathcal{A}_{\Gamma_2}/\mathcal{G}_{\Gamma_2}) \end{split}$$

• describe time evolution as an operator

$$\widehat{Z}(M): L^2(\mathcal{A}_{\Gamma_1}/\mathcal{G}_{\Gamma_1}) \to L^2(\mathcal{A}_{\Gamma_2}/\mathcal{G}_{\Gamma_2})$$

• use as gauge-invariant Hilbert spaces for S_1 and S_2 :

$$\begin{split} \mathcal{H}_{\mathsf{gauge}}^1 \, &= \, L^2(\mathcal{A}_{\Gamma_1}/\mathcal{G}_{\Gamma_1}) \\ \mathcal{H}_{\mathsf{gauge}}^2 \, &= \, L^2(\mathcal{A}_{\Gamma_2}/\mathcal{G}_{\Gamma_2}) \end{split}$$

describe time evolution as an operator

$$\widehat{Z}(M): L^2(\mathcal{A}_{\Gamma_1}/\mathcal{G}_{\Gamma_1}) \to L^2(\mathcal{A}_{\Gamma_2}/\mathcal{G}_{\Gamma_2})$$

• since spin network states $\Psi_{N_{\Gamma}}$ form a basis of $\mathcal{H}_{gauge} = L^2(\mathcal{A}_{\Gamma}/\mathcal{G}_{\Gamma})$ sufficient for specifying operator $\widehat{Z}(M)$ to know transition amplitudes

$$\langle \Psi_{N_2}, \widehat{Z}(M) \Psi_{N_1} \rangle_2$$

because then we can write with an ONB $\{\Psi_{N_2}\}$

$$\widehat{Z}(M) \Psi_{N_1} = \sum_{\Psi_{N_2}}^{\mathsf{ONB}} \Psi_{N_2} \langle \Psi_{N_2}, \widehat{Z}(M) \Psi_{N_1} \rangle_2$$
• write transition amplitudes as sum over amplitudes Z(F) of spinfoams F going from N_1 to N_2 :

$$\langle \Psi_{N_2}, \widehat{Z}(M) \Psi_{N_1} \rangle_2 \stackrel{\text{def.}}{=} \sum_F^{N_1 \to N_2} Z(F)$$

• amplitude for closed spinfoam $F=(\kappa,\rho,\iota)$ is product of amplitudes of its faces f , edges e and vertices v

$$Z(F) = N(F) \prod_{f \in \kappa} Z_f(\rho_f) \prod_{e \in \kappa} Z_e(\rho_{f(e)}) \prod_{v \in \kappa} Z_v(\rho_{f(v)})$$

• write transition amplitudes as sum over amplitudes Z(F) of spinfoams F going from N_1 to N_2 :

$$\langle \Psi_{N_2}, \widehat{Z}(M) \Psi_{N_1} \rangle_2 \stackrel{\text{def.}}{=} \sum_F^{N_1 \to N_2} Z(F)$$

• amplitude for closed spinfoam $F=(\kappa,\rho,\iota)$ is product of amplitudes of its faces f , edges e and vertices v

$$Z(F) = N(F) \prod_{f \in \kappa} Z_f(\rho_f) \prod_{e \in \kappa} Z_e(\rho_{f(e)}) \prod_{v \in \kappa} Z_v(\rho_{f(v)})$$

- amplitude formula for open spinfoams differs in three points:
 - \oplus edges and vertices lying in the spin networks N_1 or N_2 to be connected excluded from the product of amplitudes
 - \oplus for spinfoam edges \widetilde{v} ending in vertices v of N_1 or N_2 use square root of usual edge amplitude
 - \oplus for spinfoam faces \widetilde{e} ending in edges e of N_1 or N_2 use square root of usual face amplitude

• reason for these modifications: achieve product rule for spinfoam amplitudes

$$Z(F_{13}) = Z(F_{23}) Z(F_{12})$$

for all spinfoams $F_{13}: N_1 \rightarrow N_3$ obtained by gluing together $F_{12}: N_1 \rightarrow N_2$ and $F_{23}: N_2 \rightarrow N_3$ along common border N_2 whereby edges and vertices lying in N_2 become erased

• reason for these modifications: achieve product rule for spinfoam amplitudes

$$Z(F_{13}) = Z(F_{23}) Z(F_{12})$$

for all spinfoams $F_{13}: N_1 \to N_3$ obtained by gluing together $F_{12}: N_1 \to N_2$ and $F_{23}: N_2 \to N_3$ along common border N_2 whereby edges and vertices lying in N_2 become erased

• this assures composition property (gluing rule) (provided sum over spinfoam amplitudes converges) for composable cobordisms M_{12} : $S_1 \rightarrow S_2$ and M_{23} : $S_2 \rightarrow S_3$:

$$\widehat{Z}(M_{23}M_{12}) = \widehat{Z}(M_{23}) \,\widehat{Z}(M_{12})$$

• for spinfoam $F_{12}: N_1 \rightarrow N_2$ define operator $\widehat{F}_{12}: L^2(\mathcal{A}_{\Gamma_1}/\mathcal{G}_{\Gamma_1}) \rightarrow L^2(\mathcal{A}_{\Gamma_2}/\mathcal{G}_{\Gamma_2})$ acting on spin network states $\Psi_1 \in L^2(\mathcal{A}_{\Gamma_1}/\mathcal{G}_{\Gamma_1})$ as

$$\widehat{F}_{12} \Psi_1 \stackrel{\text{def.}}{=} \Psi_{N_2} \langle \Psi_{N_1}, \Psi_1 \rangle_1$$

$$\Rightarrow \quad \widehat{F}_{12} \Psi_{N_1} = \Psi_{N_2} \| \Psi_{N_1} \|^2$$

• for spinfoam $F_{12}: N_1 \to N_2$ define operator $\widehat{F}_{12}: L^2(\mathcal{A}_{\Gamma_1}/\mathcal{G}_{\Gamma_1}) \to L^2(\mathcal{A}_{\Gamma_2}/\mathcal{G}_{\Gamma_2})$ acting on spin network states $\Psi_1 \in L^2(\mathcal{A}_{\Gamma_1}/\mathcal{G}_{\Gamma_1})$ as

$$\widehat{F}_{12} \Psi_1 \stackrel{\text{def.}}{=} \Psi_{N_2} \langle \Psi_{N_1}, \Psi_1 \rangle_1$$

$$\Rightarrow \quad \widehat{F}_{12} \Psi_{N_1} = \Psi_{N_2} \| \Psi_{N_1} \|^2$$

• thus for arbitrary spin network states $\Psi_{1,2} \in L^2(\mathcal{A}_{\Gamma_{1,2}}/\mathcal{G}_{\Gamma_{1,2}})$

$$\langle \Psi_2, \widehat{F}_{12} \Psi_1 \rangle_2 = \langle \Psi_2, \Psi_{N_2} \rangle_2 \langle \Psi_{N_1}, \Psi_1 \rangle_1$$

• for spinfoam $F_{12}: N_1 \to N_2$ define operator $\widehat{F}_{12}: L^2(\mathcal{A}_{\Gamma_1}/\mathcal{G}_{\Gamma_1}) \to L^2(\mathcal{A}_{\Gamma_2}/\mathcal{G}_{\Gamma_2})$ acting on spin network states $\Psi_1 \in L^2(\mathcal{A}_{\Gamma_1}/\mathcal{G}_{\Gamma_1})$ as

$$\widehat{F}_{12} \Psi_1 \stackrel{\text{def.}}{=} \Psi_{N_2} \langle \Psi_{N_1}, \Psi_1 \rangle_1$$

$$\Rightarrow \quad \widehat{F}_{12} \Psi_{N_1} = \Psi_{N_2} \| \Psi_{N_1} \|^2$$

• thus for arbitrary spin network states $\Psi_{1,2} \in L^2(\mathcal{A}_{\Gamma_{1,2}}/\mathcal{G}_{\Gamma_{1,2}})$

$$\langle \Psi_2, \widehat{F}_{12} \Psi_1 \rangle_2 = \langle \Psi_2, \Psi_{N_2} \rangle_2 \langle \Psi_{N_1}, \Psi_1 \rangle_1$$

• can write time evolution operator consistently with previous equations as

$$\begin{aligned} \widehat{Z}(M_{12})\Psi_{N_1} &= \sum_{N_2}^{\Gamma_2} \sum_{F_{12}}^{N_1 \to N_2} Z(F_{12}) \ \widehat{F}_{12} \ \Psi_{N_1} \ / \| \Psi_{N_1} \|^2 \\ &= \sum_{N_2}^{\Gamma_2} \Psi_{N_2} \sum_{F_{12}}^{N_1 \to N_2} Z(F_{12}) \\ &= \sum_{N_2}^{\Gamma_2} \Psi_{N_2} \ \langle \Psi_{N_2}, \widehat{Z}(M_{12}) \Psi_{N_1} \rangle_2 \end{aligned}$$

Outline

- Classical field equations
- Classical phase space
- Canonical quantization
- Observables
- Bath integral quantization
- 6 Spinfoams
- Transition amplitudes
- 4-dim. Quantum Gravity
- Onclusions

- Palatini formulation of 4-dim. GR: spacetime M = 4-dim. oriented smooth manifold
- choose bundle T over M, isomorphic to TM but not in canonical way, **internal space**, equip T with orientation and metric η , either Lorentzian or Riemannian
- P = oriented orthonormal frame bundle of M = a principal G-bundle with G either SO(3,1) or SO(4) corresponding to metric η

- basic fields in Palatini formulation:
 - \oplus a \mathcal{T} -valued 1-form e on M: e: $TM \rightarrow \mathcal{T}$
 - \oplus a connection A on P
 - \oplus curvature F of A: an ad(P)-valued 2-form

- basic fields in Palatini formulation:
 - \oplus a \mathcal{T} -valued 1-form e on M: e: $TM \rightarrow \mathcal{T}$
 - \oplus a connection A on P
 - \oplus curvature F of A: an ad(P)-valued 2-form
- ad(P) isomorphic to $\Lambda^2 \mathcal{T}$, thus can think of F as $\Lambda^2 \mathcal{T}$ -valued 2-forms, also $(e \wedge e)$, with local coordinates $\{x^k\}$ on M and basis $\{b_m\}$ of $T^*\mathcal{T}$:

$$\begin{split} e \wedge e &= e_{k_1}^{l_1} e_{k_2}^{l_2} dx^{k_1} \wedge dx^{k_2} \otimes b_{l_1} \wedge b_{l_2} \\ F &= F_{j_1 j_2}^{m_1 m_2} dx^{j_1} \wedge dx^{j_2} \otimes b_{m_1} \wedge b_{m_2} \\ e \wedge e \wedge F &= e_{k_1}^{l_1} e_{k_2}^{l_2} F_{j_1 j_2}^{m_1 m_2} dx^{k_1} \wedge dx^{k_2} \wedge dx^{j_1} \wedge dx^{j_2} \otimes b_{l_1} \wedge b_{l_2} \wedge b_{m_1} \wedge b_{m_2} \\ &= \underbrace{f(x) dx^1 \wedge dx^2 \wedge dx^3 \wedge dx^4}_{\text{Tr} (e \wedge e \wedge F)} \otimes \underbrace{b_1 \wedge b_2 \wedge b_3 \wedge b_4}_{\text{vol}_{int}} \end{split}$$

- Palatini Lagrangian: $\mathcal{L} = \text{Tr} (e \wedge e \wedge F)$
- field equations: $e \wedge F = 0$ $d_A(e \wedge e) = 2 e \wedge d_A e = 0$

- Palatini Lagrangian: $\mathcal{L} = \text{Tr} (e \wedge e \wedge F)$
- field equations: $e \wedge F = 0$ $d_A(e \wedge e) = 2 e \wedge d_A e = 0$
- \bullet define spacetime metric on M via e and internal metric $\eta : \ g(v,w) \stackrel{\rm def.}{=} \eta(ev,ew)$
- if $e: TM \to \mathcal{T}$ bijective, then spacetime metric g nondegenerate and inherits signature of internal metric η

- Palatini Lagrangian: $\mathcal{L} = \text{Tr} (e \wedge e \wedge F)$
- field equations: $e \wedge F = 0$ $d_A(e \wedge e) = 2 e \wedge d_A e = 0$
- define spacetime metric on M via e and internal metric η : $g(v,w) \stackrel{\text{def.}}{=} \eta(ev,ew)$
- if $e:\ TM\ \to\ {\mathcal T}$ bijective, then spacetime metric g nondegenerate and inherits signature of internal metric η
- pull back connection A to metric connection Γ on TM, if $e: TM \rightarrow \mathcal{T}$ bijective, then $d_A e = 0$, Γ torsion-free, thus Γ is Levi-Civita connection of spacetime metric g
- rewriting $e \wedge F$ in terms of Riemann curvature tensor, one sees it is proportional to Einstein tensor, thus $e \wedge F = 0$ is vacuum Einstein equation

 setting E = e ∧ e makes Palatini Lagrangian look like BF Lagrangian, difference: not every ad(P)-valued 2-form E is of form e ∧ e, thus allowed variations of E field in Palatini GR more restricted than in BF theory, thus Palatini field equations weaker than BF equations:

$$F = 0 \qquad \qquad e \wedge F = 0$$

$$d_A E = 0 \qquad \qquad d_A E = 2e \wedge d_A e = 0$$

• relation between Palatini GR and BF theory suggests one could develop spinfoam model of QG by taking spinfoam model of BF theory and imposing quantum analogues of constraint that E is of form $e \wedge e$

- consider at classical level constraints that must hold in order to have E field of form e \lambda e: pick spin structure for spacetime and take Spin(4) as gauge group
- locally can think of E field as taking values in $\mathfrak{so}(4) \cong \mathfrak{so}(3) \oplus \mathfrak{so}(3)$, thus can write $E = E^+ + E^-$ as sum of left-handed and right-handed parts taking values in $\mathfrak{so}(3)$
- if $E = e \wedge e$ then constraint $||E^+(v, w)|| = ||E^-(v, w)||$ holds for all vector fields v, w on Mconstraint guarantees $E = e \wedge e$ (up to sign and Hodge star on $\Lambda^2 \mathcal{T}$)

 recall facts of 4-dim. BF theory with gauge group SU(2): spinfoam is dual 2-skeleton of triangulated 4-manifold, each dual face labeled by spin, each dual edge by intertwiner, corresponds to labeling each triangle by spin and each tetrahedron by 4-valent intertwiner (= connecting four spins)

- recall facts of 4-dim. BF theory with gauge group SU(2): spinfoam is dual 2-skeleton of triangulated 4-manifold, each dual face labeled by spin, each dual edge by intertwiner, corresponds to labeling each triangle by spin and each tetrahedron by 4-valent intertwiner (= connecting four spins)
- general trivalent intertwiners: tensor product of any pair ρ_1, ρ_2 of irreps can be written as direct sum of irreps ρ_k , pick one $\rho_3 \in \{\rho_k\}$, projection from $\rho_1 \otimes \rho_2$ to ρ_3 is trivalent intertwiner ι can be used to label trivalent vertices or edges, usually normalized: Tr $(\iota *\iota) = 1$

- recall facts of 4-dim. *BF* theory with gauge group SU(2): spinfoam is dual 2-skeleton of triangulated 4-manifold, each dual face labeled by spin, each dual edge by intertwiner, corresponds to labeling each triangle by spin and each tetrahedron by 4-valent intertwiner (= connecting four spins)
- general trivalent intertwiners: tensor product of any pair ρ_1, ρ_2 of irreps can be written as direct sum of irreps ρ_k , pick one $\rho_3 \in \{\rho_k\}$, projection from $\rho_1 \otimes \rho_2$ to ρ_3 is trivalent intertwiner ι can be used to label trivalent vertices or edges, usually normalized: Tr $(\iota \ ^*\iota) = 1$

if irrep ρ₃ appears more than once in direct sum decomposition (ρ₁ ⊗ ρ₂) then more than one intertwiner of above form, can always choose ONB {ι_k} of such intertwiners: Tr (ι_k *ι_l) = δ_{kl}

• SU(2) irreps: $j_1 \otimes j_2 \cong |j_1 - j_2| \oplus ... \oplus j_1 + j_2$, thus each basis of intertwiners $\iota : (j_1 \otimes j_2) \to j_3$ consists of exactly one (normalized) element iff $|j_1 - j_2| \leq j_3 \leq (j_1 + j_2)$

• SU(2) irreps: $j_1 \otimes j_2 \cong |j_1 - j_2| \oplus ... \oplus j_1 + j_2$, thus each basis of intertwiners $\iota : (j_1 \otimes j_2) \to j_3$ consists of exactly one (normalized) element iff $|j_1 - j_2| \leq j_3 \leq (j_1 + j_2)$

 4-dim. triangulation with each tetrahedron labeled by a 4-valent intertwiner: skein relation = chopping each tetrahedron in half by parallelogram labeled by sum over spins j on right-hand side of skein relation, thus all data encoded in spins labeling surfaces, each spin describing integral of || E || over its surface

- describe 4-dim. Riemannian QG as BF theory with gauge group Spin(4) with extra constraint, since Spin(4) ≅ SU(2)×SU(2), irreps are of form j⁺ ⊗ j⁻ for arbitrary spins j[±], thus label triangles and parallelograms by pairs (j⁺, j⁻) of spins, describing integral of || E[±] || over surface
- in order to on quantum level impose constraint $||E^+(v,w)|| = ||E^-(v,w)||$, restrict to labeling surfaces with equal spins

• label each triangle a by irrep of form $j_a \otimes j_a$ and each tetrahedron by intertwiner of form $\sum_j c_j \iota_j \otimes \iota_j$

with $\iota_j: j_{a_1} \otimes j_{a_2} \xrightarrow{j} j_{a_3} \otimes j_{a_4}$

- label each triangle a by irrep of form $j_a \otimes j_a$ and each tetrahedron by intertwiner of form $\sum_j c_j \iota_j \otimes \iota_j$ with ι_j : $j_{a_1} \otimes j_{a_2} \xrightarrow{j} j_{a_3} \otimes j_{a_4}$
- however exist three ways of splitting tetrahedron in half by parallelogram P, want constraint $\int_{P} ||E^+|| = \int_{P} ||E^-||$ to hold for all three, thus must label tetrahedra by intertwiners $\sum_{j} c_j \iota_j \otimes \iota_j$ which maintain this form during switching to different splitting

- label each triangle a by irrep of form $j_a \otimes j_a$ and each tetrahedron by intertwiner of form $\sum_j c_j \iota_j \otimes \iota_j$ with ι_j : $j_{a_1} \otimes j_{a_2} \xrightarrow{j} j_{a_3} \otimes j_{a_4}$
- however exist three ways of splitting tetrahedron in half by parallelogram P, want constraint $\int_P \|E^+\| = \int_P \|E^-\|$ to hold for all three, thus must label tetrahedra by intertwiners $\sum_j c_j \iota_j \otimes \iota_j$ which maintain this form during switching to different splitting

• unique solution:
$$\iota = \sum_{j} (2j+1) \iota_j \otimes \iota_j$$

Outline

- Classical field equations
- Classical phase space
- Canonical quantization
- Observables
- 5 Path integral quantization
- 6 Spinfoams
- Transition amplitudes
- 4-dim. Quantum Gravity

Onclusions

state:

- have proposal for spinfoam model of QG with quantized values for area and volume
- ⊕ quantum state of space is linear combination of spin networks
- ⊕ transition amplitudes computed as sum over spinfoams connecting spin networks
- \oplus in q-deformed version of theory these sums are finite and explicitly computable

state:

- \oplus have proposal for spinfoam model of QG with quantized values for area and volume
- \oplus quantum state of space is linear combination of spin networks
- ⊕ transition amplitudes computed as sum over spinfoams connecting spin networks
- \oplus in q-deformed version of theory these sums are finite and explicitly computable

problems:

- ⊕ only Riemannian QG, no Lorentzian version
- ⊕ theory depends on fixed triangulation of spacetime
- ability of computations with theory too poor to tell if large-scale limit is classical Riemannian GR

state:

- \oplus have proposal for spinfoam model of QG with quantized values for area and volume
- \oplus quantum state of space is linear combination of spin networks
- ⊕ transition amplitudes computed as sum over spinfoams connecting spin networks
- \oplus in q-deformed version of theory these sums are finite and explicitly computable

problems:

- only Riemannian QG, no Lorentzian version
- ⊕ theory depends on fixed triangulation of spacetime
- ability of computations with theory too poor to tell if large-scale limit is classical Riemannian GR

• tasks:

- ⊕ develop spinfoam models of Lorentzian QG
- \oplus determine role which triangulations should play in spinfoam models with local d.o.f.
- ⊕ develop computational techniques for studying large-scale limit