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Literature:

talk closely follows J. Baez’ paper:

An Introduction to Spin Foam Models of BF Theory and Quantum Gravity [arxiv:gr-qc/9905087]

plus sections 1.1-1.6, 5.1 and 7.2 of R. Oeckl’s book:

Discrete Gauge Theory, Imperial College Press, 2005

helpful publications also consulted:

J. Baez: Spin Foam Models [arxiv:gr-qc/9709052]

D. Oriti: Spacetime Geometry from Algebra: Spin Foam Models for non-perturbative
Quantum Gravity [arxiv:gr-qc/0106091]

A. Perez: Introduction to Loop Quantum Gravity and Spin Foams [arxiv:gr-qc/0409061]
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gauge group: Lie group G,
with Lie algebra g equipped with invariant nondegenerate bilinear form 〈 · , · 〉g

spacetime: smooth, oriented manifold M

choose principal G-bundle P
π−→M ,

vector bundle associated to P
π−→M via adjoint action of G on g is ad(P )

πa−→M
with ad(P ) = (P × Ad(G))/G and Ad(G) the adjoint representation of G

basic fields of theory:
A = connection on P
F = dA+A ∧A is curvature of A: an ad(P )-valued 2-form on M
E = ad(P )-valued (n−2)-form on M

pick local trivialization, can think of A,F,E as g-valued 1,2,(n - 2)-forms on M , with local
coordinates {xj} on M and basis {em} of g ∼= T1G we can write

A = Ama dxa ⊗ em
F = F lb1,b2 dx

b1 ∧ dxb2 ⊗ el
E = Ekj1,...,jn−2

dxj1 ∧ ... ∧ dxjn−2 ⊗ ek
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Lagrangian of BF theory: L = Tr (E ∧ F )

Tr (E ∧ F ) is n-form constructed by taking wedge product of form parts of E and F and
using bilinear form 〈 · , · 〉g to pair g-valued parts

Tr (E ∧ F ) = Ekj1,...,jn−2
F lb1,b2 〈ek, el〉g dx

j1 ∧ ... ∧ dxjn−2 ∧ dxb1 ∧ dxb2

field equations: F = 0 dAE = 0
dA = covariant exterior derivative

locally: all solutions of BF theory equal modulo gauge transformations:
BF theory is a topological field theory

BF -action invariant under E gauge: E 7→ E + dAη for some g-valued (n−3)-form η

since A flat, for any E with dAE = 0 there exists an η such that locally E = dAη
since locally all closed forms are exact
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3d-GR is special case of BF theory: n = 3 and G = SO(2, 1)
〈 · , · 〉so(2,1) is minus its Killling form

if 1-form E : TM → ad(P ) is bijective, then nondegenerate Lorentzian metric defined by

g(x)(v, w)
def.
= 〈E(x)v, E(x)w〉so(2,1) ∀ v, w ∈ TxM

can pull back connection A to flat Levi-Civita connection on TM , thus metric g flat

in 3d spacetime vacuum Einstein equations just say: metric is flat

many different A and E fields correspond to same metric,
but all related by gauge transformations

thus in 3d spacetime, BF theory with G = SO(2, 1)
is alternate formulation of Lorentzian GR without matter fields

with G = SO(3) we obtain Riemannian GR: much easier to quantize than Lorentzian GR
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assume spacetime M is product Rtime × S
S = smooth, oriented (n−1)-dim. manifold representing space

work in temporal gauge: time component of connection A vanishes

momentum canonically conjugate to A is: ∂L
∂Ȧ

= E

before imposing constraints: configuration space of BF theory
is infinite-dim. vector space A of connections on P |S
kinematical phase space is corresponding classical phase space: cotangent bundle T ∗A
point therein consists of connection A on P |S and ad(P |S)-valued (n−2)-form E on S

field equations put constraints on initial data A and E on time-zero slice S:
0 = B = dA+A ∧A dAE = 0

to deal with these constraints: apply symplectic reduction
to kinematical phase space T ∗A to obtain physical phase space
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∂Ȧ

= E

before imposing constraints: configuration space of BF theory
is infinite-dim. vector space A of connections on P |S
kinematical phase space is corresponding classical phase space: cotangent bundle T ∗A
point therein consists of connection A on P |S and ad(P |S)-valued (n−2)-form E on S

field equations put constraints on initial data A and E on time-zero slice S:
0 = B = dA+A ∧A dAE = 0

to deal with these constraints: apply symplectic reduction
to kinematical phase space T ∗A to obtain physical phase space

Max Dohse (IMUNAM Morelia) QG Seminar 09.05.2008 9 / 63



assume spacetime M is product Rtime × S
S = smooth, oriented (n−1)-dim. manifold representing space

work in temporal gauge: time component of connection A vanishes

momentum canonically conjugate to A is: ∂L
∂Ȧ
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constraint dAE = 0 called Gauss law, generates action of gauge transformations on T ∗A
symplectic reduction with respect to Gauss constraint:
gauge-invariant phase space T ∗(A/G)
G = group of gauge transformations of bundle P |S

no-curvature constraint B = 0 is special to BF theory,
generates transformations of form E 7→ E + dAη
thus these transformations are really gauge symmetries as claimed before

symplectic reduction with respect to no-curvature constraint:
physical phase space T ∗(A0/G)
A0 = space of flat connections on P |S

points in this physical phase space correspond to physical states of classical BF theory
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T ∗(A) H kin = L2(A)

T ∗(A/G) H gauge = L2(A/G)

T ∗(A0/G) H phys = L2(A0/G)

u

constrain

w

quantize

u

constrain

u

constrain

w

quantize

u

constrain

w

quantize

assume gauge group G connected + compact, manifold S representing space real-analytic

Fun(A) = algebra of functionals on space of connections A of form

Ψf,Γ[A] = f({hγk [A] | γk ∈ Γ}) hγk [A]
def.
= P exp

ˆ

γk

A

define inner product on Fun(A), complete it, obtain Hilbert space H kin = L2(A)˙
Ψf1,Γ1 , Ψf2,Γ2

¸ def.
=

ˆ „er∈Γ12Y
r

dher

«
f1({hγk [A] | γk ∈ Γ12

γk⊆eγk∈Γ1
}) f2({hγk [A] | γk ∈ Γ12

γk⊆eγk∈Γ2
})

Γ1,Γ2 ⊆ Γ12 and dh = normalized Haar measure of gauge group G
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finite collection of real-analytic paths γj : [0, 1] → S = graph in S
if they are embedded in S and intersect only at their endpoints (if at all),
paths = edges and endpoints of paths = vertices,
edge γj is outgoing from a vertex v if v = γj(0) and incoming to v if v = γj(1)

(closed) spin network N = (Γ, ρ, ι) in S with symmetry group G is triple consisting of:

1 graph Γ in S

2 edge-labeling ρ of each edge e of Γ by an irrep ρe of G

3 vertex-labeling ι of each vertex v of Γ by intertwiner ιv :

ιv :
`
ρ
ein
1 (v) ⊗ ...⊗ ρ

ein
n(v)(v)

´
→
`
ρeout

1 (v) ⊗ ...⊗ ρeout
o(v)(v)

´
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Fun(A/G) = algebra of gauge-invariant functionals in Fun(A),
completing in above norm yields gauge-invariant Hilbert space H gauge = L2(A/G),
this space is spanned by spin network states:

ΨN [A]
def.
=

er∈NY
r

ρer (her [A])αrβr

vj∈NY
j

(ιvj )
βj1 ...βjn(j)
αj1 ...αjo(j)

ΨN [A] = ρe1 (he1 [A])α1
β1

ρe2 (he2 [A])α2
β2

ρe3 (he3 [A])α3
β3

(ιv1 )β2
α1α3

(ιv2 )β1β3
α2
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u

constrain

w

quantize

u

constrain

u

constrain

w

quantize

u

constrain

w

quantize

classically imposing no-curvature constraint yields physical phase space T ∗(A0/G),
however in most cases no natural measure on (A0/G),
Hilbert space cannot be defined unambiguously

have to accept mere vector space instead of Hilbert space,
every functional in Fun(A/G) restricts to one in Fun(A0/G),
the space of gauge-invariant functionals on flat connections,
call elements of this space physical states,
even if there is no natural measure on A0/G
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spin networks in S related through homotopy define same physical state,
because holonomy of flat connection does not change under homotopies

reparametrize edge of spin network in S
by orientation-preserving diffeomorphism of unit interval

reverse orientation of an edge, while dualizing irrep
and appropriately dualizing intertwiners at its vertices

subdivide edge into two edges labeled by same irrep, inserting vertex with identity intertwiner

erase edges labeled by trivial irrep
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true physical observables ↔ H phys, ”observables”↔ H gauge

Wilson loop = functional of form Tr ρ(hγ [A]), spin network = generalization of Wilson loop:

spin network N defines operator bΨN [A]

acting as multiplication by ΨN [A] on elements of Fun(A/G)

ΨN [A] ∈ Fun(A/G) bounded ⇒ bΨN [A] = bounded operator on H gauge = L2(A/G)
called spin network observable

ΨN [A] ∈ Fun(A0/G) also bounded ⇒ bΨN [A] = bounded operator on H phys = L2(A0/G)

spin network observables on H gauge not invariant under homotopies of graph Γ of N ,
but spin network operators on H phys are invariant and satisfy skein relations

Max Dohse (IMUNAM Morelia) QG Seminar 09.05.2008 18 / 63



true physical observables ↔ H phys, ”observables”↔ H gauge

Wilson loop = functional of form Tr ρ(hγ [A]), spin network = generalization of Wilson loop:

spin network N defines operator bΨN [A]

acting as multiplication by ΨN [A] on elements of Fun(A/G)

ΨN [A] ∈ Fun(A/G) bounded ⇒ bΨN [A] = bounded operator on H gauge = L2(A/G)
called spin network observable

ΨN [A] ∈ Fun(A0/G) also bounded ⇒ bΨN [A] = bounded operator on H phys = L2(A0/G)

spin network observables on H gauge not invariant under homotopies of graph Γ of N ,
but spin network operators on H phys are invariant and satisfy skein relations

Max Dohse (IMUNAM Morelia) QG Seminar 09.05.2008 18 / 63



true physical observables ↔ H phys, ”observables”↔ H gauge

Wilson loop = functional of form Tr ρ(hγ [A]), spin network = generalization of Wilson loop:

spin network N defines operator bΨN [A]

acting as multiplication by ΨN [A] on elements of Fun(A/G)

ΨN [A] ∈ Fun(A/G) bounded ⇒ bΨN [A] = bounded operator on H gauge = L2(A/G)
called spin network observable

ΨN [A] ∈ Fun(A0/G) also bounded ⇒ bΨN [A] = bounded operator on H phys = L2(A0/G)

spin network observables on H gauge not invariant under homotopies of graph Γ of N ,
but spin network operators on H phys are invariant and satisfy skein relations
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any product of Wilson loops = finite linear combination of spin network observables

example: one Wilson loop as spin network observable

(I)
def.
= Tr ρ0(hW [A]) = (II) = ρ0(hW [A])αβ

ι1z}|{
δαβ

= (III) = ρ0(he1 [A])α1
β1

ρ0(he2 [A])α2
β2

ι1z }| {
δα1β2

ι2z }| {
δα2β1

= ρ0(he1 [A])α1
α2

ρ0(he2 [A])α2
α1

=
“
ρ0(he1 [A]) ρ0(he2 [A])

”α1

α1

=
“
ρ0(hW [A])

”α1

α1
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example: two Wilson loops as spin network observable

(IV) = Tr ρ1(hW1 [A]) · Tr ρ2(hW2 [A])

= (V) = ρ1(he1 [A])α1
β1

ρ1(he2 [A])α2
β2

ρ2(he3 [A])α3
β3

ρ2(he4 [A])α4
β4

ι1z }| {
δα2β1 δα4β3

ι2z }| {
δα1β2 δα3β4

=
“
ρ1(he1 [A]) ρ1(he2 [A])

”α1

α1
·
“
ρ2(he3 [A]) ρ2(he4 [A])

”α3

α3

=
“
ρ1(hW1 [A]))

”α1

α1
·
“
ρ2(hW2 [A]))

”α3

α3

Max Dohse (IMUNAM Morelia) QG Seminar 09.05.2008 20 / 63



G = U(1): gauge-inv. functional of E-field = integral over (n−2)-dim. submanifold Σ of S

ˆ

Σ

E but not gauge-invariant in nonabelian case

e = g-valued function on Σ, d
n−2
x = (n−2)-form on Σ ⇒ E|Σ = e d

n−2
x

gauge-invariant functional of E provided by

E(Σ)
def.
=

ˆ

Σ

d
n−2
x
q

〈e, e〉g| {z }
|E|

quantizing E(Σ) gives self-adjoint operator bE(Σ) on H gauge = L2(A/G)
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spin network N in space S intersects (n−2)-submanifold Σ in finitely many points:

bE(Σ) acts on ΨN ∈ H gauge = L2(A/G) by

bE(Σ) ΨN =
X
k

p
C(ρk) ΨN

C(ρk) = Casimir of irrep ρk

physical significance of spin network edges: represent quantized flux lines of E-field
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3-dim. BF theory with G = SU(2), SO(3) is formulation of 3-dim. Riemannian GR,bE(Σ) can be interpreted as length of curve Σ, in 4-dim. BF theory as area of surface Σ

irreps of SU(2) correspond to spins j = 0, 1
2
, 1, ...,

Casimir of the spin-j irrep is j(j+1)1,

edge of spin j contributes length/area
p
j(j+1) to any curve/surface it crosses

consequence: length/area in 3/4-dim. Riemannian QG have discrete spectra

application: blackhole entropy:
associate degrees of freedom of event horizon to points of intersection with spin networks,
then derive Bekenstein-Hawking entropy proportional to area of event horizon
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quantization of BF theory via path integral: consider partition function

Z =

ˆ
DA

ˆ
DE exp i

ˆ

M

Tr (E ∧ F )

to give sense to this expression, introduce discretization,
hope path integral becomes well defined

define theory only on discrete, finite set of points in spacetime,
which we call vertices, assume fields to vary slowly between vertices

connection A, implemented in discrete version by considering parallel transports between
vertices, need pathes connecting vertices along which parallel transport takes place, call
pathes edges

implement curvature in form of holonomies along closed loops formed by edges,
specify loop by surface bounded by its edges, call surface face

vertices, edges and faces together = lattice L on spacetime
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equip L with orientation, define discretized connection A on L
by assigning group element ge to each edge e

ge = P exp−
ˆ

e

A

measure on space of connections under discretization
becomes product over Haar measure of all edges:

DA  
Y
e

dge

define discretized gauge transformation by assigning element hv of G to each vertex v

discretized curvature represented by group element gf (defined up to conjugation)

gf
def.
= go1e1 ... g

ok
ek

under discretized gauge transformations gf also transforms by conjugation

thus gauge invariant information about curvature contained in conjugacy class of gf ,
to obtain gauge-invariant Lagrangian, apply class function σ to gf
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gf expressed by approximately constant curvature 2-form F on f by

gf ≈ exp(−a2
fFµν +O(a4

f ))

face and dual face in one-to-one correspondence, can associate discretized field eE = ?E to
faces f

for action on M with slowly varying curvature we obtain

S =

ˆ

M

Tr (E ∧ F ) =

ˆ

M

Tr (? eE ∧ F )

≈
X
C

anC

CX
(µ,ν)

Tr ( eEµνFµν)

=
X
f

Tr ( eEfµνF fµν) an−2
f a2

f

=
X
f

Tr ( bEfµν a2
fF

f
µν| {z }bFfµν

)
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in discretization, curvature a2
fF

f
µν = bF fµν on face f becomes group element gf ,

thus linear function Tr ( bEfµν ·) on Lie algebra g
must become function on group G, make substitution

exp iTr ( bEfµν ·)  χρf (·)

thus d.o.f. of E-field appear in discretized BF theory
as representation valued d.o.f. attached to faces of lattice

discretized version of exponentiated action:

exp iS  
Y
f

χρf (gf )

now discretizing BF theory we naturally have arrived at a lattice setup which is just
structure underlying spinfoams defined in next section
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partition function: Z =
´
DA

´
DE exp i

´
M

Tr (E ∧ F )

for one face f :
´
d bEfµν exp iTr ( bEfµν bF fµν) = δ( bF fµν)

discretization: delta function on Lie algebra becomes delta function on group

δ(gf ) =
X
ρf

χρf (gf ) dim ρf

all faces

ˆ
DE exp i

ˆ

M

Tr (E ∧ F ) =

ˆ „Y
f

d bEfµν « exp i
X
f

Tr ( bEfµν bF fµν)

=
Y
f

δ( bF fµν)  
Y
f

δ(gf )

partition function: Z =

ˆ Y
e

dge
Y
f

δ(gf )

=

ˆ Y
e

dge
Y
f

X
ρ

χρ(gf ) dim ρ

=

ˆ Y
e

dge
X
{ρf}

Y
f

χρf (gf ) dim ρf
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character χρ(g) is trace of matrix tρ(g) derived from representation matrix via

χρ(g) = Tr tρ(g)

tρab(g) = 〈φa|ρ(g)|vb〉

and

tρ(g1g2) = tρ(g1) tρ(g2)

χρf (gf ) = Tr tρf (go1e1 ... g
ok
ek ) = Tr

“
tρf (go1e1 ) ... tρf (g

ok
ek )
”
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circuit diagrams:
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since

Y
f

χρf (gf ) =
Y
f

Tr
“
tρf (go1e1 ) ... tρf (g

ok
ek )
”

=
Y
f

X
a1,...,ak

t
ρf
a1a2 (go1e1 ) t

ρf
a2a3 (go2e2 ) ... t

ρf
aka1 (g

ok
ek )
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t
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ˆ Y
e

dge
Y
f

χρf (gf )
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skein relation:
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value of vertex diagram at vertex v depends on irreps labeling incident faces
and their orientations, and all intertwiners labeling incident edges,
denote value of vertex diagram by

Av({ρfv}, {ofv}, {ιev})
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thus obtain for partition function

Z =
X
{ρf}

„Y
f

dim ρf

« ˆ „Y
e

dge

«„Y
f

χρf (gf )

«

=
X
{ρf}

X
{ιe}

„Y
f

dim ρf

« „Y
v

Av({ρfv}, {ofv}, {ιev})
«

discretizing BF theory we naturally have arrived at spinfoam defined in next section

partition function is that of spinfoam model
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closed spinfoam F = (κ, ρ, ι) with symmetry group G is triple consisting of:

1 oriented 2-complex κ,
2 face-labeling ρ of each face f of κ by an irrep ρf of G and
3 edge-labeling ι of each edge e of κ by intertwiner ιe

ιe :
`
ρ
f in
1 (e) ⊗ ...⊗ ρ

f in
n(e)(e)

´
→
`
ρfout

1 (e) ⊗ ...⊗ ρfout
o(e)(e)

´
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spinfoam
`
F = (κ, eρ,eι)´ : /0 →

`
N = (Γ, ρ, ι)

´
with symmetry group G

connecting the empty spin network /0 with N is triple consisting of:

1 oriented 2-complex κ bordered by Γ,
2 face-labeling eρ of each face f of κ by irrep eρf of G and
3 edge-labeling eι of each edge e of κ not contained in Γ by intertwiner eιeeιe :

`
ρ
f in
1 (e) ⊗ ...⊗ ρ

f in
n(e)(e)

´
→
`
ρfout

1 (e) ⊗ ...⊗ ρfout
o(e)(e)

´
4 such that for any edge e of Γ if ee is incoming to e then eρee = ρe,

but if ee is outgoing from e then eρee = ∗ρe and
5 for any vertex v of Γ after appropriate dualizations: eιev = ιv .
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dual spin network ∗N of N : same oriented 1-complex Γ,
but each edge e labeled by dual irrep ∗ρe
and each vertex v labeled by appropriately dualized version of intertwiner ιv .

tensor product N1 ⊗N2 of two spin networks N1 = (Γ1, ρ1, ι1) and N2 = (Γ2, ρ2, ι2):
disjoint union of N1 and N2

open spin foam is spinfoam F : N1 → N2

connecting two nonempty spin networks N1 and N2,
defined to be F : /0 →

`∗
N1 ×N2

´
.
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in 4-dim. BF theory with gauge group SU(2):

⊕ spin network edges give area to surfaces they cross,
since they are slices of spinfoam faces,
these give area to surfaces they intersect

⊕ spin network vertices give 3-volume to regions of space they lie in,
since they are slices of spinfoam edges,
these give volume to 3-surfaces they cross

⊕ spinfoam vertices expected to give 4-volume to regions of spacetime they lie in,
but computations not finished
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region of n-dim. spacetime: compact oriented cobordism M12 : S1 → S2

with S1, S2 being (n−1)-dim. compact oriented manifolds representing space

choose n-dim. triangulation ∆ of spacetime M ,
induces (n−1)-dim. triangulations ∂∆1 and ∂∆2 on S1, S2 with dual 1-skeletons Γ1,Γ2
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construction of gauge-invariant Hilbert spaces for S1 and S2:

connection on given graph Γ: assign elements g of gauge group G to edges,
space of such connections is AΓ

assignment can be thought of as representing parallel transport along edge γ,
if graph were embedded in space with connection A,

gγ [A] = hγ [A]
def.
= P exp

ˆ

γ

A
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construction of gauge-invariant Hilbert spaces for S1 and S2:

connection on given graph Γ: assign elements g of gauge group G to edges,
space of such connections is AΓ

gauge transformation on Γ: assign element of G to each vertex,
group of these gauge transformations is GΓ

H kin = L2(AΓ) H gauge = L2(AΓ/GΓ),

ONB of L2(AΓ/GΓ) formed by spin network states ΨN with N = (Γ, ρ, ι)

if graph Γ embedded in space S, then trivializing G-bundle at vertices
gives map from A to AΓ and a homomorphism from G to GΓ, thus

L2(AΓ) ↪→ L2(A)

L2(AΓ/GΓ) ↪→ L2(A/G)
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use as gauge-invariant Hilbert spaces for S1 and S2:

H 1
gauge = L2(AΓ1/GΓ1 )

H 2
gauge = L2(AΓ2/GΓ2 )

describe time evolution as an operator

bZ(M) : L2(AΓ1/GΓ1 ) → L2(AΓ2/GΓ2 )

since spin network states ΨNΓ form a basis of H gauge = L2(AΓ/GΓ)

sufficient for specifying operator bZ(M) to know transition amplitudes

〈ΨN2 , bZ(M) ΨN1〉2

because then we can write with an ONB {ΨN2}

bZ(M) ΨN1 =
ONBX
ΨN2

ΨN2 〈ΨN2 , bZ(M) ΨN1〉2
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write transition amplitudes as sum over amplitudes Z(F )
of spinfoams F going from N1 to N2:

〈ΨN2 , bZ(M) ΨN1〉2
def.
=

N1→N2X
F

Z(F )

amplitude for closed spinfoam F = (κ, ρ, ι)
is product of amplitudes of its faces f , edges e and vertices v

Z(F ) = N(F )
Y
f∈κ

Zf (ρf )
Y
e∈κ

Ze(ρf(e))
Y
v∈κ

Zv(ρf(v))

amplitude formula for open spinfoams differs in three points:

⊕ edges and vertices lying in the spin networks N1 or N2 to be connected
excluded from the product of amplitudes

⊕ for spinfoam edges ev ending in vertices v of N1 or N2
use square root of usual edge amplitude

⊕ for spinfoam faces ee ending in edges e of N1 or N2
use square root of usual face amplitude
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reason for these modifications: achieve product rule for spinfoam amplitudes

Z(F13) = Z(F23) Z(F12)

for all spinfoams F13 : N1 → N3 obtained by gluing together
F12 : N1 → N2 and F23 : N2 → N3 along common border N2

whereby edges and vertices lying in N2 become erased

this assures composition property (gluing rule)
(provided sum over spinfoam amplitudes converges)
for composable cobordisms M12 : S1 → S2 and M23 : S2 → S3:

bZ(M23M12) = bZ(M23) bZ(M12)
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for spinfoam F12 : N1 → N2 define operator bF12 : L2(AΓ1/GΓ1 ) → L2(AΓ2/GΓ2 )
acting on spin network states Ψ1 ∈ L2(AΓ1/GΓ1 ) as

bF12 Ψ1
def.
= ΨN2 〈ΨN1 , Ψ1〉1

⇒ bF12 ΨN1 = ΨN2 ||ΨN1 ||
2

thus for arbitrary spin network states Ψ1,2 ∈ L2(AΓ1,2/GΓ1,2 )

〈Ψ2, bF12 Ψ1〉2 = 〈Ψ2, ΨN2〉2 〈ΨN1 , Ψ1〉1

can write time evolution operator consistently with previous equations as

bZ(M12)ΨN1 =

Γ2X
N2

N1→N2X
F12

Z(F12) bF12 ΨN1 / ||ΨN1 ||
2

=

Γ2X
N2

ΨN2

N1→N2X
F12

Z(F12)

=

Γ2X
N2

ΨN2 〈ΨN2 , bZ(M12) ΨN1〉2
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Palatini formulation of 4-dim. GR: spacetime M = 4-dim. oriented smooth manifold

choose bundle T over M , isomorphic to TM but not in canonical way, internal space, equip
T with orientation and metric η, either Lorentzian or Riemannian

P = oriented orthonormal frame bundle of M = a principal G-bundle
with G either SO(3,1) or SO(4) corresponding to metric η
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basic fields in Palatini formulation:
⊕ a T -valued 1-form e on M : e : TM → T
⊕ a connection A on P
⊕ curvature F of A: an ad(P )-valued 2-form

ad(P ) isomorphic to Λ2T , thus can think of F as Λ2T -valued 2-forms, also (e ∧ e),
with local coordinates {xk} on M and basis {bm} of T ∗T :

e ∧ e = el1k1
el2k2

dxk1 ∧ dxk2 ⊗ bl1 ∧ bl2
F = Fm1m2

j1j2
dxj1 ∧ dxj2 ⊗ bm1 ∧ bm2

e ∧ e ∧ F = el1k1
el2k2

Fm1m2
j1j2

dxk1 ∧ dxk2 ∧ dxj1 ∧ dxj2 ⊗ bl1 ∧ bl2 ∧ bm1 ∧ bm2

= f (x) dx1 ∧ dx2 ∧ dx3 ∧ dx4| {z }
Tr (e∧e∧F )

⊗ b1 ∧ b2 ∧ b3 ∧ b4| {z }
volint
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Palatini Lagrangian: L = Tr (e ∧ e ∧ F )

field equations: e ∧ F = 0 dA(e ∧ e) = 2 e ∧ dAe = 0

define spacetime metric on M via e and internal metric η: g(v, w)
def.
= η(ev, ew)

if e : TM → T bijective, then spacetime metric g nondegenerate
and inherits signature of internal metric η

pull back connection A to metric connection Γ on TM ,
if e : TM → T bijective, then dAe = 0, Γ torsion-free,
thus Γ is Levi-Civita connection of spacetime metric g

rewriting e ∧ F in terms of Riemann curvature tensor,
one sees it is proportional to Einstein tensor,
thus e ∧ F = 0 is vacuum Einstein equation
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setting E = e ∧ e makes Palatini Lagrangian look like BF Lagrangian,
difference: not every ad(P )-valued 2-form E is of form e ∧ e,
thus allowed variations of E field in Palatini GR more restricted than in BF theory,
thus Palatini field equations weaker than BF equations:

F = 0 e ∧ F = 0

dAE = 0 dAE = 2e ∧ dAe = 0

relation between Palatini GR and BF theory suggests
one could develop spinfoam model of QG
by taking spinfoam model of BF theory and imposing quantum analogues of constraint
that E is of form e ∧ e
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consider at classical level constraints that must hold
in order to have E field of form e ∧ e:
pick spin structure for spacetime and take Spin(4) as gauge group

locally can think of E field as taking values in so(4) ∼= so(3)⊕ so(3),
thus can write E = E+ + E− as sum of left-handed and right-handed parts
taking values in so(3)

if E = e ∧ e then constraint ||E+(v, w) || = ||E−(v, w) ||
holds for all vector fields v, w on M
constraint guarantees E = e ∧ e (up to sign and Hodge star on Λ2T )
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recall facts of 4-dim. BF theory with gauge group SU(2):
spinfoam is dual 2-skeleton of triangulated 4-manifold,
each dual face labeled by spin, each dual edge by intertwiner,
corresponds to labeling each triangle by spin
and each tetrahedron by 4-valent intertwiner (= connecting four spins)

general trivalent intertwiners: tensor product of any pair ρ1, ρ2 of irreps
can be written as direct sum of irreps ρk, pick one ρ3 ∈ {ρk},
projection from ρ1 ⊗ ρ2 to ρ3 is trivalent intertwiner ι
can be used to label trivalent vertices or edges, usually normalized: Tr (ι ∗ι) = 1

if irrep ρ3 appears more than once in direct sum decomposition (ρ1 ⊗ ρ2)
then more than one intertwiner of above form,
can always choose ONB {ιk} of such intertwiners: Tr (ιk

∗ιl) = δkl
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can break any 4-valent intertwiner into trivalent ones using skein relation:
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SU(2) irreps: j1 ⊗ j2 ∼= |j1 − j2| ⊕ ...⊕ j1 + j2,
thus each basis of intertwiners ι : (j1 ⊗ j2) → j3
consists of exactly one (normalized) element iff |j1 − j2| ≤ j3 ≤ (j1 + j2)
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can break any 4-valent intertwiner into trivalent ones using skein relation:

4-dim. triangulation with each tetrahedron labeled by a 4-valent intertwiner:
skein relation = chopping each tetrahedron in half by parallelogram
labeled by sum over spins j on right-hand side of skein relation,
thus all data encoded in spins labeling surfaces,
each spin describing integral of ||E || over its surface
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describe 4-dim. Riemannian QG as BF theory with gauge group Spin(4)
with extra constraint, since Spin(4)∼= SU(2)×SU(2),
irreps are of form j+ ⊗ j− for arbitrary spins j±,
thus label triangles and parallelograms by pairs (j+, j−) of spins,
describing integral of ||E± || over surface

in order to on quantum level impose constraint ||E+(v, w) || = ||E−(v, w) ||,
restrict to labeling surfaces with equal spins
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label each triangle a by irrep of form ja ⊗ ja
and each tetrahedron by intertwiner of form

P
j
cj ιj ⊗ ιj

with ιj : ja1 ⊗ ja2
j→ ja3 ⊗ ja4

however exist three ways of splitting tetrahedron in half by parallelogram P ,

want constraint
´
P

||E+ || =
´
P

||E− || to hold for all three,

thus must label tetrahedra by intertwiners
P
j
cj ιj ⊗ ιj

which maintain this form during switching to different splitting

unique solution: ι =
P
j

(2j + 1) ιj ⊗ ιj
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state:
⊕ have proposal for spinfoam model of QG with quantized values for area and volume
⊕ quantum state of space is linear combination of spin networks
⊕ transition amplitudes computed as sum over spinfoams connecting spin networks
⊕ in q-deformed version of theory these sums are finite and explicitly computable

problems:
⊕ only Riemannian QG, no Lorentzian version
⊕ theory depends on fixed triangulation of spacetime
⊕ ability of computations with theory too poor to tell if large-scale limit is classical Riemannian GR

tasks:
⊕ develop spinfoam models of Lorentzian QG
⊕ determine role which triangulations should play in spinfoam models with local d.o.f.
⊕ develop computational techniques for studying large-scale limit
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