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1 Introduction – Motivation

What is Geometric Quantization good for?

Better understanding of quantization in general.

Wider range of applicability.

Topological invariants of 3-manifolds in applications of
geometric quantization to TFTs.
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1 Introduction – What is Quantization?

What is Quantization?

”Quantization is putting hats on letters.” ⇒ ???

”Putting the hat on” means mapping a set of classical observables O1, . . . ,On on
phase space M to a set of quantum observables, i.e. hermitian operators
Ô1, . . . , Ôn acting on a Hilbert space H. ⇒ What is the mapping? What is H?

In Quantum mechanics in the Schrödinger representation we have the Hilbert space
H = L2(Q). With Q =space-time and the mappings:

pµ −→ −i~
∂

∂qµ
, qµ −→ qµ, [qµ, pν ] = i~δµν

The Quantum from the Classical?

From a theoretical standpoint, quantization might be viewed as an unnatural
procedure since we - as macroscopic beings - are forced to obtain the quantum
theory from the classical one.
However we should view the quantum theory as the truely fundamental theory which
is to yield the classical theory through coarse graining.

There is no reason to believe that any crazy classical Lagrangian should have a
corresponding quantum equivalent.
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Ô1, . . . , Ôn acting on a Hilbert space H. ⇒ What is the mapping? What is H?

In Quantum mechanics in the Schrödinger representation we have the Hilbert space
H = L2(Q). With Q =space-time and the mappings:

pµ −→ −i~
∂

∂qµ
, qµ −→ qµ, [qµ, pν ] = i~δµν

The Quantum from the Classical?

From a theoretical standpoint, quantization might be viewed as an unnatural
procedure since we - as macroscopic beings - are forced to obtain the quantum
theory from the classical one.
However we should view the quantum theory as the truely fundamental theory which
is to yield the classical theory through coarse graining.

There is no reason to believe that any crazy classical Lagrangian should have a
corresponding quantum equivalent.

Felix Haas (UNAM Morelia, Mexico) Geometric Quantization on curved Spacetime September 29th 2008 4 / 27



1 Introduction – What is Quantization?

What is Quantization?

”Quantization is putting hats on letters.” ⇒ ???

”Putting the hat on” means mapping a set of classical observables O1, . . . ,On on
phase space M to a set of quantum observables, i.e. hermitian operators
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1 Introduction – Axiomatization

Requirements for a quantization Q
1 Linearity: Q(λf + g) = λQ(f) +Q(g)

2 Unitality: Q(1) = 11

3 Hermiticity: Q(f)∗ = Q(f)

4 Poisson representation: [Q(f),Q(g)] = −i~Q({f, g})
5 Irreducibility: {fi}i∈I set of complete observables

⇒ {Q(fi)}i∈I set of complete operators.

Product of Observables

Note that we do not demand P(f1f2) = P(f1)P(f2).

The crux of quantization

Existence: It is in general not possible to satisfiy both 4 and 5.

Uniqueness: These axioms do not determine the underlying quantum theory
uniquely.
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1 Introduction – Elements of Symplectic Geometry

Symplectic Geometry

A symplectic manifold M is a manifold with a nondegenerate closed two-form ω
called the symplectic form.

Nondegeneracy ⇔ det(ωµν) 6= 0
⇒ dim(M) = 2n (an odd dimensional antisymmetric matirx has zero determinant)

If ω is exact: ω = dθ, then θ is called the symplectic potential.

To every f ∈ C∞(M) there is an associated Hamiltonian vector field Xf , defined by

ιXfω = −df.

Every Symplectic manifold is Poisson, i.e. {f, g} := ω(Xf , Xg)

The Hamiltonian vector fields form an infinite dimensional Lie algebra:

[Xf , Xg] = X{f,g}
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2 Prequantization

Prequantizaton is...

...the construction of a faithful representation of the Poisson algebra of functions by
linear operators on a Hilbert space.

The central observation is that the identity [Xf , Xg] = X{f,g} shows that the
Hamiltonian vector fields give a representation of the Poisson algebra by first order
differential operators on C∞(M).

Indeed, the mapping f → −i~Xf fulfills the quantization axioms 1,3,4. However the
zero vector field is assigned to any constant function and thus violates 2: Q(1) = 11.

The prequantization map, satisfying axioms 1-4 is

P̃ : f 7−→ P̃(f) := −i~Xf − θ(Xf ) + f

Note...

...there are no differential operators of order higher then one in geometric quantization.

But...

...what happens if ω is not exact, i.e. globally /∃θ ? Or...

...if we choose a different θ′ = θ + α with dα = 0 ?
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2 Prequantization – Line Bundles

Line Bundles

Let θ′ = θ + du, then P̃ ′(f)eiu/~ψ = eiu/~P̃(f)ψ. Thus also changing
ψ′ := eiu/~ψ gives unitarily equivalent operators.

Since θ and θ′ determine u only up to a constant, the global phase remains
undefined.

Is this reminiscent of a gauge theory, or what? But what is the bundle which the
wave-functions are sections of?

Definition 1: A complex line bundle π : L→M is a complex vector bundle with one
dimensional fiber.

Definition 2: A Prequantization of a symplectic manifold (M,ω) is a pair (L,∇) where
L is a complex Hermitian line bundle over M and ∇ a compatible connection with
curvature ~−1ω.

In a particular trivialization the connection reads: ∇ = d− i~−1θ.

Which indeed lets the curvature Ω(X,Y )s = i[∇X∇Y −∇Y∇X −∇[X,Y ]]s be
Ω = ~−1dθ = ~−1ω

Felix Haas (UNAM Morelia, Mexico) Geometric Quantization on curved Spacetime September 29th 2008 8 / 27



2 Prequantization – Line Bundles

Line Bundles

Let θ′ = θ + du, then P̃ ′(f)eiu/~ψ = eiu/~P̃(f)ψ. Thus also changing
ψ′ := eiu/~ψ gives unitarily equivalent operators.

Since θ and θ′ determine u only up to a constant, the global phase remains
undefined.

Is this reminiscent of a gauge theory, or what? But what is the bundle which the
wave-functions are sections of?

Definition 1: A complex line bundle π : L→M is a complex vector bundle with one
dimensional fiber.

Definition 2: A Prequantization of a symplectic manifold (M,ω) is a pair (L,∇) where
L is a complex Hermitian line bundle over M and ∇ a compatible connection with
curvature ~−1ω.

In a particular trivialization the connection reads: ∇ = d− i~−1θ.

Which indeed lets the curvature Ω(X,Y )s = i[∇X∇Y −∇Y∇X −∇[X,Y ]]s be
Ω = ~−1dθ = ~−1ω

Felix Haas (UNAM Morelia, Mexico) Geometric Quantization on curved Spacetime September 29th 2008 8 / 27



2 Prequantization – Line Bundles

Line Bundles

Let θ′ = θ + du, then P̃ ′(f)eiu/~ψ = eiu/~P̃(f)ψ. Thus also changing
ψ′ := eiu/~ψ gives unitarily equivalent operators.

Since θ and θ′ determine u only up to a constant, the global phase remains
undefined.

Is this reminiscent of a gauge theory, or what? But what is the bundle which the
wave-functions are sections of?

Definition 1: A complex line bundle π : L→M is a complex vector bundle with one
dimensional fiber.

Definition 2: A Prequantization of a symplectic manifold (M,ω) is a pair (L,∇) where
L is a complex Hermitian line bundle over M and ∇ a compatible connection with
curvature ~−1ω.

In a particular trivialization the connection reads: ∇ = d− i~−1θ.

Which indeed lets the curvature Ω(X,Y )s = i[∇X∇Y −∇Y∇X −∇[X,Y ]]s be
Ω = ~−1dθ = ~−1ω

Felix Haas (UNAM Morelia, Mexico) Geometric Quantization on curved Spacetime September 29th 2008 8 / 27



2 Prequantization – Line Bundles

Line Bundles

Let θ′ = θ + du, then P̃ ′(f)eiu/~ψ = eiu/~P̃(f)ψ. Thus also changing
ψ′ := eiu/~ψ gives unitarily equivalent operators.

Since θ and θ′ determine u only up to a constant, the global phase remains
undefined.

Is this reminiscent of a gauge theory, or what? But what is the bundle which the
wave-functions are sections of?

Definition 1: A complex line bundle π : L→M is a complex vector bundle with one
dimensional fiber.

Definition 2: A Prequantization of a symplectic manifold (M,ω) is a pair (L,∇) where
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2 Prequantization – Line Bundles

The Prequantization map P...

...is defined to be:

P(f) := −i~∇Xf + f

which of course is well defined, even for non-trivial line bundles, i.e. ω not globally exact
and satisfies

[P(f),P(g)] = −i~P({f, g}).

The prequantum Hilbert space is the space of L2-sections s : M → L.

A crucial question in quantization is:

When is a symplectic manifold (phase space of a classical theory) quantizable? That is:
When can we construct a complex line bundle over it which has curvatutre ~−1ω?

Short answer:

If ~−1ω is to be the curvature of a connection, then a neccessary and (when M simply
connected also sufficient) condition is (2π)−1

R
Σ

~−1ω ∈ Z for any closed oriented
two-surface Σ.
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2 Prequantization – Line Bundles

Precise answer:

A symplectic manifold (M,ω) is called quantizable iff the class of (2π~)−1ω in
H2(M,R) lies in the image of H2(M,Z).

Counter Example

M = S2
r × S2

s for r 6= qs q ∈ Q is not quantizable.

2nd Question:

When are two prequantizations to be viewed as equivalent?

Answer

Given a prequantization (L,∇) and a flat line bundle (L0,∇0) the product
(L⊗ L0,∇⊗∇0) is again a prequantization.

Conversly, given two prequantizations (L1,∇1) and (L2,∇2), they differ by a flat
line bundle (L0,∇0).

Isomorphism classes of flat line bundles -and thus prequantizations- are in one-to-one
correspondence with the elements of H1(M,U(1)).
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3 Examples of Prequantizations – Mechanics

Mechanics on Rn

Let the space-time be Q = Rn, the phase space is M = T ∗Q.
Since Rn is contractible, all fiber bundles over Rn are trivial. Thus L = T ∗Q× C.

The canonical symplectic 2-form is globally exact ω = dθ = d(pνdqν) = dpν ∧ dqν .
And the connection on L is globally given by ∇ = d− i~−1θ.

The hamiltonian vector field Xqµ associated to qµ is determined by

ω(Xqµ , ·)
!
= −dqµ ⇒ dpν(Xqµ)dqν = −dqµ ⇒ Xqµ = − ∂

∂pµ
.

Therefore the prequantum operator is given by

P(qµ)
!
= −i~[d− i~−1θ]Xqµ + qµ = −i~Xqµ − pνdqν(Xqµ) + qµ = i~ ∂

∂pµ
+ qµ.

And equivalently for pµ one gets

P(pµ) = −i~ ∂
∂qµ

.

This obviously does not reproduce the Schrödinger representation of position and
momentum operators of quantum mechanics.
(note: we have not yet answered what H is...)
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3 Examples of Prequantizations – Elements of Classical Field Theory

Cauchy Correspondence for Klein-Gordon Theory

Klein-Gordon fields are sections of the bundle E = Q×R→ Q and the theory is given by

LKG :=
1

2
(∇aφ∇bφ−m2φ2), ⇒ [∇a∇a −m2]φ = 0.

In arbitrary curved spacetimes Q, the classical existance and uniqueness properties of
solutions to the KG-eqn. can be very different from that of Minkowski spacetime.

However, there is a simple condition on (Q, g) which guarantees that the KG-eqn.
has a well posed initial value formulation: It has to be globally hyperbolic (i.e. admit
a Cauchy surface).

Theorem: Let (Q, g) be a globally hyperbolic spacetime and let Σ be a smooth Cauchy
surface. Then the KG-eqn. has a well posed initial value formulation:
Given any pair of C∞-functions (φ0, φ̇0) on Σ, there exists a unique global solution φ to
the KG-eqn., such that φ|Σ =: φ0 and [na∇aφ]Σ =: φ̇0.

That is - in the globally hyperbolic case - we can view elements of the space of
solutions M as φ = (φ0, φ̇0) := (φ|Σ, [na∇aφ]Σ).
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3 Examples of Prequantizations – Elements of Classical Field Theory

Classical Fields

Let M be the phase space of a classical field theory with action

S :=
R
M
vol L(φα, φβa , x),

where L is a function on the first jet bundle J1(E) and φ is a section of a vector bundle
E → Q fullfilling the Euler-Lagrange equations:

∂L

∂φα
=

∂

∂xa
∂L

∂φαa
,

with φβa := ∇aφβ .

Define a one form θ on M by

ιXθ :=

Z
Σ

dσXαna
∂L

∂φαa

where is Σ ⊂ Q a Cauchy surface with volume form dσ and future orientated normal
vector na.
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3 Examples of Prequantizations – Elements of Classical Field Theory

Classical Fields 1

θ defines a closed 2-form ω := dθ which is independent of the choice of Σ, since for
a field X which falls off sufficiently fast at infinity:

ιX(θ′ − θ) = ιXd
`R
D
vol L

´
⇒ d(θ′ − θ) = 0,

where D is the region of Q between Σ and Σ′.

Explicitly ω is given by

ω(X,Y ) = dθ(X,Y ) = X(θ(Y ))− Y (θ(X))− θ([X,Y ]) =

Z
Σ

ω̃anadσ

ω̃a =
∂2L

∂φβ∂φαa
(XβY α − Y βXα) +

∂2L

∂φβb ∂φ
α
a

(Y α∇bXβ −Xα∇bY β)

But ω is not necessarily nondegenerate (meaning weakly nondegenerate:
ω(X,Y ) = 0 ∀Y ⇒ X = 0).
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3 Examples of Prequantizations – Elements of Classical Field Theory

Classical Fields 2

If there is one Cauchy surface Σ such that ω̃ana is nondegenerate, then ω is
nondegenerate und thus a symplectic form on M .

If ω is degenerate, we must reduce M by factoring out (TM/K) the characteristic
distribution K := {X ∈ τM |ω(X, ·) = 0} , which generally involves the removal of
gauge freedom.

Note however that TM/K is not necessarily integrable, i.e. is not necessarily the
tangent bundle to a reduced phace space M/G. According to the Frobenius theorem
this is only the case if TM/K is involutive.
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If ω is degenerate, we must reduce M by factoring out (TM/K) the characteristic
distribution K := {X ∈ τM |ω(X, ·) = 0} , which generally involves the removal of
gauge freedom.

Note however that TM/K is not necessarily integrable, i.e. is not necessarily the
tangent bundle to a reduced phace space M/G. According to the Frobenius theorem
this is only the case if TM/K is involutive.
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3 Examples of Prequantizations – Klein-Gordon Theory

Klein-Gordon Theory 1

ω is nondegenerate and thus a symplectic form, given by

ω(φ, φ′) =

Z
Σ

na[φ′∇aφ− φ∇aφ′]dσ,

where we have identified points in the space of solutions (phase space) M with
vectors on M . This is possible since M is a vector space.

Using the Cauchy correspondence φ = (φ0, φ̇0), we can rewrite the symplectic form:

ω(φ, φ′) = ω[(φ0, φ̇0), (φ′0, φ̇
′
0)] =

Z
Σ

[φ′0φ̇0 − φ0φ̇
′
0]dσ

KG-theory is linear, and thus has a linear space of solutions M (a vector space).
Every vector space is contractible and thus all fiber bundles over it are trivial.

The complex line bundle of prequantization is L = M × C and the connection on L
is globally ∇ = d− i~−1θ.
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3 Examples of Prequantizations – Klein-Gordon Theory

Klein-Gordon Theory 2

Even in classical field theory in general one cannot define a L2(Q,E) field at any given
point x ∈ Q since the field may be infinite on a null set. One thus makes use of an
f ∈ L2(Q,R) with compact support and resorts to smeared field configurations

Af (φ) :=

Z
Σ

dσ fφ =

Z
Σ

dσ fφ0.

The linear functional Af (·) on M is the object one wants to quantize.

The Hamiltonian vector field XA = (xA, yA) of Af is defined by

ω[(xA, yA), (φ̃0,
˙̃
φ0)] = −dAf (φ̃0,

˙̃
φ0) = −Af (φ̃0,

˙̃
φ0)Z

Σ

dσ[φ̃0yA − xA ˙̃
φ0] = −

Z
Σ

dσ fφ̃0,

which gives XA = (xA, yA) = (0,−f).

The prequantum operator is thus

P(Af ) = −i~[d− i~−1θ](0,−f) +Af = i~(0, f) +Af
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3 Examples of Prequantizations – Klein-Gordon Theory

Klein-Gordon Theory 3

Analog to the functional Af we can define a second functional

Bf (φ) :=

Z
Σ

dσ fna∇aφ =

Z
Σ

dσ fφ̇0

who’s Hamiltonian vector field XB = (xB , yB) is obtained byZ
Σ

dσ [φ̃0yB − xB ˙̃
φ0] = −Bf (φ̃0,

˙̃
φ0) = −

Z
Σ

dσ f
˙̃
φ0,

which gives XB = (xB , yB) = (f, 0) and thus the prequantization operator

P(Bf ) = −i~(f, 0)− θ(f, 0) +Bf = −i~(f, 0)−
Z

Σ

dσ

»
fna

∂L

∂φa

–
+Bf

= −i~(f, 0)−Bf (φ) +Bf
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3 Examples of Prequantizations – Klein-Gordon Theory

Klein-Gordon Theory 4

We can now calculate the commutator of the two operators Af and Bf using

[P(Af ),P(Bg)] = −i~P({Af , Bg}) = −i~P(ω(XA, XB))

= −i~P(−
Z

Σ

dσ fg) = i~
»Z

Σ

dσ fg

–
P(1)

= i~
Z

Σ

dσ fg

To eastablish contact with the physicists language, set f(x)“ = “δ(x− x1),
g(x)“ = “δ(x− x2) to obtain

[P(Af ),P(Bg)]“ = “i~
Z

Σ

dσ δ(x− x1)δ(x− x2) = i~δ(x1 − x2)
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4 Polarization

Polarization

We saw that prequantization is not fully satifactory, as -in the case of mechanics - it
fails to reproduce the Schrödinger representation of the position operator.

This is because the prequantum Hilbert space H := L2(M,L) is to large.
Wave-functions ψ depend on position and momentum. Whereas in the Schrödinger
representation they are to depend only on position.

Solution: Demand that ψ ∈ H is constant (i.e. parallel) along n linearly independent
vector fields in M :

∇Xψ = 0 ∀X ∈ P.
where P ⊂ TM is an n-dimensional distribution.

⇒ ∀X,Y ∈ P, Ω(X,Y ) = −i∇[X,Y ] = ~−1ω(X,Y )

which is automatically satisfied if

1 P is integrable (i.e. a foliation) and thus involutive: ∀X,Y ∈ P : [X,Y ] ∈ P
2 The integral manifolds are isotropic (i.e. Lagrangian, since dim(P ) = n):
∀X,Y ∈ P : ω(X,Y ) = 0
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4 Polarization – Mechanics

Definition: Polarization

A real Polarization of a symplectic manifold (M,ω) is a foliation of M by Lagrangian
submanifolds.

Polarization of Mechanics on Rn

Prequantization left us with

P(qµ) = i~ ∂
∂pµ

+ qµ, P(pµ) = −i~ ∂
∂qµ

.

The idea is now to reduce H = L2(M,L) to L2(Q,Q× C) via polarization, so that the
sections of L→M ' Q× T ∗mQ are restricted to the ones that depend only on position.

Choose P = Tp(T
∗
mQ) ' T ∗mQ, then

∀X,Y ∈ T ∗mQ ⇒ X,Y = X(p), Y (p) ⇒

ω(X,Y ) = dpν(X)dqν(Y ) = dpν(X) · 0 = 0.

So P = T ∗mM is isotropic and since dim(T ∗mM) = (1/2) dim(T ∗M), it is also
Lagrangian.
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4 Polarization – Mechanics

Momentum Representation

The position (or Schrödinger) representation amounts to a vertical polarization
(P ' T ∗mQ). Since the prequantum operators are asymmetic, the momentum
representation is not just a horizontal (P ' Q) polarization with the prequantum
operators previously deduced, but one adaitionally has to alter the choice of the
connection on the line bundle.

Hilbert Space

Define: PL := {ψ : M → L|∇Xψ = 0, ∀X ∈ P}
Ideally one would like to define the Hilbert space of the quantum theory to be

HP := L2(M,L) ∩ PL.

However, in general this simple definition faces severe problems:

For the vertical polarization of mechanics one gets L2(M,L) ∩ PL = ∅, since the
Schrödinger wave functions depend only on coordinates and thus the momentum
integrals diverge.

For the vertical polarization this problem is solved by so called half-density
quantization, where you change the line bundle L→ L⊗ δ.
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4 Polarization – Mechanics

Complex polarization

Turn TM into a Kähler manifold, by defining a complex structure J (linear map
J : TM → TM with J2 = −1) on TM which is compatible with the symplectic
structure ω (i.e. ω(Jv, Jw) = ω(v, w)).

Kähler polarization

J can be diagonalized in the complexification TMC := {X + iY |X,Y ∈ TM} of TM .

The +i,−i eigenspaces of J are denoted T (1,0)M = {X − iJX|X ∈ TM} and
T (0,1)M = {X + iJX|X ∈ TM} which are Lagrangian subspaces since J is
compatible with ω.

The polarization P = T (0,1)M is called Kähler, since

P ∩ P = T (1,0)M ∩ T (0,1)M = {0}
For Kähler polarizations the straightforward construction HP := L2(M,L) ∩ PL
works, as it can be shown that P (L) ⊂ L2(M,L) closed and thus a Hilbert space of
its own right.

Note however that Kähler polarization does not reduce the prequantum operators to
the usual momentum and position operators of QM.
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works, as it can be shown that P (L) ⊂ L2(M,L) closed and thus a Hilbert space of
its own right.

Note however that Kähler polarization does not reduce the prequantum operators to
the usual momentum and position operators of QM.
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4 Polarization – Klein-Gordon Theory

Polarization

Let (Q, g) be a globally hyperbolic spacetime, which is stationary (it admits a
one-parameter group of isometries whose orbits are timelike). Let ξ be the Killing vector
field which generates these isometries.

Complexifying M gives MC, on which we define the inner product

〈φ1, φ2〉 :=

Z
Σ

Tab(φ1, φ2)ξanbdσ

Tab(φ1, φ2) = ∇aφ1∇bφ2 +∇bφ1∇aφ2 −
1

2
gab[∇cφ1∇cφ2 +m2φ1φ2]

This is independent of the choice of Σ, since ∇aTab = 0, Tab = Tba and
∇aξb = −∇bξa.
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4 Polarization – Klein-Gordon Theory

Polarization

On M we now have the antisymmetric 2-form ω(·, ·) and the symmetric 2-form 〈·, ·〉.
We thus get the relation

(?) ω(X, ·) = C 〈X, ·〉 , for C ∈ R \ {0}

This generates two disjunct subspaces V ± := {X ∈ TMC|C ≷ 0 in (?)}.
V ± are Lagrangian since ∀X,Y ∈ V + and C+ ∈ (0,+∞)

−ω(Y,X) = ω(X,Y ) = C+ 〈X,Y 〉 = C+ 〈Y,X〉 ,

and thus ω(X,Y ) = 0 ∀X,Y ∈ V + (isotropic).

So P = V + is indeed a polarization.
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Thanx to my “coach“ Olaf and all the listeners...
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