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1 Fock quantization in a curved spacetime

• let pM, gq be globally hyperbolic spacetime, E Ñ M be vector bundle
over M such that section φ P C8

comppM,Eq represents a field configuration
on spacetime, e.g., real Klein-Gordon field

• C8pM,Eq smooth sections, i.e., maps s : M Ñ E such that π � s �
IdM , C8

comppM,Eq smooth sections of E with compact support = test
sections on E

• consider as equation of motion wave equation pPφ � α with normally
hyperbolic operator pP : C8pM,Eq Ñ C8pM,Eq acting on sections φ
in fiber bundle M Ñ E, pP and α given, φ to be found

• linear differential operator of second order pP : C8pM,Eq Ñ C8pM,Eq
is called normally hyperbolic if for local coordinates px1, ..., xnq on M
and a local trivialization of E it writes as

pP � �
ņ

i,j�1

gijpxq
B2

Bxi Bxj �
ņ

j�1

Ajpxq
B
Bxj � Bpxq

with Aj and B matrix-valued coefficients depending smoothly on x and
pgij the inverse matrix of pgij � xBxi , Bxj yTM

• examples of normally hyperbolic operators: d’Alembert operator 2, square
of Dirac operator D2, δd� dδ with exterior derivative d and codifferential
δ

• Theorem (in Bär, Ginoux, Pfäffle): let pM, gq globally hyperbolic
Lorentzian manifold with metric connection ∇, Σ � M spacelike Cauchy
surface, n future directed timelike unit normal field along Σ, E vector
bundle over M and pP normally hyperbolic operator acting on sections in
E,

then for each φ0, χ0 P C8
comppΣ, Eq and each α P C8

comppM,Eq there exists
unique solution φ P C8pM,Eq of the Cauchy problem, i.e., φ satisfies

pP φ � α

φ|Σ � φ0

p∇nφq|Σ � χ0

and suppφ � JM pKq with K � suppφ0 Y suppχ0 Y suppα

and the map sending pα, φ0, χ0q to unique solution φ of Cauchy problem
is continuous and linear

• point in classical phase space P consists of test field configuration φ0 and
test momentum π0 on Cauchy surface Σ, we assume that π depends on φ
only via p∇nφq
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• moreover consider only systems with linear equations of motion and con-
figuration space C being vector space, P � T�C thus vector space, too,
therefore at any point x P P we can identify TxP with P itself, thus sym-
plectic form ΩP on P under this identification can be seen as bilinear map
ΩP : P � P Ñ R

• S is space of solutions of wave equation which arise from initial data in
P, also vector space because equations of motion linear

• by theorem above each point pφ0, π0q P P in phase space gives rise to
unique element in space S of solutions, thus we can identify P and S,
moreover S is independent of choice of Cauchy surface Σ

• write φ|Σ � φ
Σ

• let phase space P be equipped with symplectic structure ΩP : P �P Ñ
R, for Klein-Gordon field given by

ΩPppφ
Σ

1 , π
Σ

1 q, pφ
Σ

2 , π
Σ

2 qq �
»
Σ

dV pπ1φ2 � π2φ1q

• if φ1 and φ2 are solutions of the equation of motion, then ΩPppφΣ

1 , π
Σ

1 q, pφ
Σ

2 , π
Σ

2 qq
is conserved in time, i.e., yields same value for all Cauchy surfaces Σt of
chosen foliation of spacetime M ,

• therefore ΩP induces symplectic mapping ΩS : S � S Ñ R via

ΩSpφ1, φ2q � ΩPppφ
Σ

1 , π
Σ

1 q, pφ
Σ

2 , π
Σ

2 qq

• fixing pφΣ
, π

Σq P P we can view ΩPppφΣ
, π

Σq, 
q as linear function on P
(and thus as linear observable) and fundamental Poisson brackets on P
then can be expressed as

!
ΩPppφ

Σ

1 , π
Σ

1 q, 
q, ΩPppφ
Σ

2 , π
Σ

2 q, 
q
)
� �ΩPppφ

Σ

1 , π
Σ

1 q, pφ
Σ

2 , π
Σ

2 qq

• want to construct bosonic QFT in which functions ΩPppφΣ
, π

Σq, 
q on clas-
sical phase space P are irreducibly represented by operators pΩPppφΣ

, π
Σq, 
q

(whole object is operator even though we write the hat only above Ω)
satisfying commutation relations corresponding to fundamental Poisson
brackets:

rpΩPppφΣ

1 , π
Σ

1 q, 
q, pΩPppφΣ

2 , π
Σ

2 q, 
qs � �i~ ΩPppφ
Σ

1 , π
Σ

1 q, pφ
Σ

2 , π
Σ

2 qq p1
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• using correspondence between phase space P and solution space S equiv-
alently we can look for operators

�pΩSpφ1, 
q, pΩSpφ2, 
q
� � �i~ ΩSpφ1, φ2q p1

• Hilbert space in QFT on flat spacetime constructed using positive and
negative frequency solutions, however in general curved spacetime there is
no naturally preferred way of defining these

• now introduce compatible complex structure pJ on symplectic vector
space pS,ΩSq, i.e., linear operator pJ : S Ñ S fulfilling pJ2 � �p1 and
ΩSpφ1, φ2q � ΩSp pJφ1, pJφ2q for all φ1,2 P S, and thus defining a positive
definite metric µ on S via µp�, �q � ΩSp pJ �, �q

• this induces a Hermitian complex inner product on solution space S:

x � , � yS � 1
2~
µp�, �q � i

2~
ΩSp�, �q � 1

2~
ΩS
�
p pJ � ip1q�, �	

• complex structure pJ naturally splits complexification of solution space
SC � S ` iS into positive and negative frequency subspaces:

positive frequency vectors: φ� �
1
2
pφ� i pJφq � φ�

negative frequency vectors: φ� �
1
2
pφ� i pJφq � φ�

• these subspaces are orthogonal xφ�1 , φ�2 yS � 0 for all φ1,2 P S, φ� � φ�

and complementary φ � φ� � φ�

• one-particle Hilbert space H 0 of theory is positive frequency subspace
of SC with inner product induced by the one of S:

xφ1, φ2yH 0
� xφ1, φ2yS � � i

~
ΩSpφ�1 , φ�2 q � � i

~
ΩSpφ�1 , φ�2 q

(respectively its Cauchy-completion with respect to norm induced by inner
product)

• only ingredient needed to construct one-particle Hilbert space H 0 from
symplectic vector space of solutions pS,ΩSq is complex structure pJ

• the map K : S Ñ H 0 defined by Kφ � φ� is a linear bijection, its
image is dense subspace of H 0

• Hilbert space H of QFT is symmetric Fock space:

FsympH 0q �
8à

n� 0

� nâ
sym

H 0
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• symmetrized tensor product bnsymH 0 of H 0 is subspace of n-fold tensor
product consisting of totally symmetric maps

α :
nà
1

H 0 Ñ C

ņ

j1,...,jn � 1

|αpej1 , ..., ejnq|2   8

and b0H 0 � C

• establish abstract index notation for Hilbert spaces: given some Hilbert
space H we can construct its complex conjugate H , its dual space H � and
its complex conjugate dual H �

• denote elements of these spaces by:

H H H � H �

φA φA
1 � φ

A
φA φA1 � φA

• Riesz’ Lemma: for every element φA of H � exists unique element φA P H
such that

φAp
q � xφA, 
 yH

i.e., every bounded linear map H Ñ C is of form ”take inner product
with some fixed vector”Riesz’ lemma provides antilinear bijection between
Hilbert space and its dual

• by Riesz lemma we can identify H with H �, i.e. φA
1 � φ

A
with φA, and

H � with H , i.e. φA with φA1 � φA, therefore we do not need to use
primed indices, can write inner product

xψA, φAyH � ψAφ
A

• denote elements of bnH as φA1,...,An and elements of bnH � respectively
H as ψA1,...,An

• elements of bnsymH satisfy φA1,...,An � φpA1,...,Anq

• vector in symmetric Fock FsympH 0q space in abstract index notation can
be written as

Ψ � pψ,ψA1 , ψA1A2 , ..., ψA1...An , ...q
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with norm given by

||Ψ ||2 � xΨ, Ψy � ψψ � ψA1
ψA1 � ψA1A2

ψA1A2 � ...   8

• now for element ξA P H 0 and corresponding ξA P H 0 define creation pa:
and annihilation pa operators: FsympH 0q Ñ FsympH 0q

pa:pξqΨ � p0, ψξA1 ,
?

2 ξpA1ψA2q,
?

3 ξpA1ψA2A3q, ...qpapξqΨ � pξA1
ψA1 ,

?
2 ξA1

ψA1A2 ,
?

3 ξA1
ψA1A2A3 , ...q

which satisfy commutation relations rpapξq, pa:pηqs � ξAη
A p1

• represent linear classical observables ΩSpφ, 
q by operator

pΩSpφ, 
q � i~
�papKφq � pa:pKφq	 � i~

�papφ�q � pa:pφ�q	
then operators are self-adjoint and indeed satisfy desired commutation
relations:

rpΩSpη, 
q, pΩSpξ, 
qs � �i~ ΩSpη, ξq p1
• calculating these commutation relations we only need to use general prop-

erties of inner product, which is induced by complex structure pJ , thus
one gets representation of the CCR for any choice of complex structure,
freedom to choose pJ represents freedom to chose quantum representation
of the CCR

• we are free to choose complex structure pJ , there is no naturally preferredpJ , since complex structure exactly determines Fock space construction,
which in turn defines notion of particles, thus there is no natural notion
of particles in general, curved spacetime
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• only in stationary spacetimes symmetries or other structure can be ex-
ploited to naturally select some preferred complex structure

• if spacetime is nearly stationary, then there exists approximate notion of
particles, it becomes ambiguous only for modes with frequency smaller
than inverse timescale for change of metric, thus in laboratories on earth
ther is no problem employing particle concept

• however in principle notion of particle in general curved spacetime is at
best approximate

• unitary map U : H Ñ H 1 is isomorphism between Hilbert spaces pre-
serving the inner product: xUΨ1, UΨ2yH 1 � xΨ1, Ψ2yH for all Ψ1,2 P H

• quantum theory consisting of Hilbert space H together with set of opera-
tors pOα : H Ñ H is unitary equivalent to quantum theory pH 1, pO 1

αq
if there exists a unitary map U : H Ñ H 1 such that pOα � U�1 pO 1

αU

• unitary equivalent quantum theories are physically equivalent in sense that
state Ψ P H in quantum theory pH , pOαq has exactly same physical prop-
erties as state UΨ P H 1 in quantum theory pH 1, pO 1

αq (i.e., both generate
same matrix elements for operators)

• R is unitary representation of group G as operators on Hilbert space H if
Rpgq is unitary operator on H for all g P G

• working with relation

�pΩSpφ1, 
q, pΩSpφ2, 
q
� � �i~ ΩSpφ1, φ2q p1

technical difficulties arise because self-adjoint operators can be unbounded
and thus not everywhere defined, therefore their composition and commu-
tators need not be well defined

• more convenient to work with exponentiated version, writeW pφq � exp iΩSpφ, 
q
and look for map turning W pφq into operator zW pφq such that it is unitary,
varies continuously with φ (in strong operator topology) and as equivalent
of commutation relations satisfies Weyl relations:

zW p0q � 1{W p�φq � zW pφq
:

zW pφq zW pψq � eiωpφ,ψq{2 {W pϕ�ψq

since zW pφq unitary, its action is well defined on whole Hilbert space

• Stone-von Neumann Theorem: If pS,Ωq is a finite-dimensional sym-
plectic vector space and pH ,zW pφqq and pH 1,{W 1pφqq are strongly continuous,
irreducible, unitary representations of the Weyl relations, then they are
unitarily equivalent
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• if Stone-von Neumann were valid also for QFT of infinite-dimensional
phase space P, then choice of complex structure pJ would lead to unitarily
equivalent theories and thus not affect physical predictions

• however if P is of infinite dimension, then different choices of pJ can indeed
yield unitarily inequivalent theories, Stone-von Neumann does not hold
here

• therefore in order to uniquely define the QFT for a general, curved space-
time it is essential to find some preferred unique unitary equivalence class
of complex structures pJ

• this seems possible only for spacetimes representing a closed universe, i.e.,
all Cauchy surfaces are compact, but for general curved spacetimes with
noncompact Cauchy surfaces no criterion to single out unique preferred
equivalence class of complex structures

• this problem is circumvented by algebraic approach to QFT which does
not require specification of preferred unitary equivalence class of pJ ’s

2 Algebraic approach to quantization

• in usual approach to quantization, first states are constructed as vectors
in some Hilbert space and then observables are defined as operators acting
on these states

• algebraic approach reverses roles of states and observables in the sense
that first here first observables are constructed as elements of an abstract
algebra and then states are defined as objects acting on observables by as-
signing real number to each observable (in usual approach this corresponds
to taking expectation values)

• advantage of this approach is that it allows to treat all states, also states
arising in unitarily inequivalent QFTs, on equal footing, thereby it be-
comes possible to define theory without selecting preferred construction

• key observation in previous section which justifies algebraic approach is
that algebra of observables is the same for all Fock constructions of a
classical field theory, even for unitary inequivalent Fock constructions:

even if pFsympH 1
0q, tpΩ1

Spφ, 
quq and pFsympH 2
0q, tpΩ2

Spφ, 
quq are unitarily
inequivalent, the algebraic relations satisfied by observables tpΩ1

Spφ, 
qu
are same as those of tpΩ2

Spφ, 
qu
• now formulate this mathematically precise, therefor introduce several struc-

tures

• C-algebra A = vector space over C with bilinear, associative vector mul-
tiplication: A�A Ñ A, pa, bq ÞÑ ab

• C�-algebra is C-algebra equipped with complete norm || || : A Ñ R
�
0

and antilinear star map � : A Ñ A, a ÞÑ a� fulfilling for all a, b P A:
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a�� � a * is involution (2.1)
pabq� � b�a� (2.2)
|| ab || ¤ || a || || b || norm is submultiplicative (2.3)
|| a� || � || a || * is isometry (2.4)

|| a�a || � || a ||2 C�-property (2.5)

• C�-subalgebra is subset of C�-algebra closed under all its operations:
addition, scalar and vector multiplication and star map

• C�-algebra has at most one unit 1, i.e. a1 � 1a � a for all a P A it
fulfills 1� � 1 and ||1 || � 1

• in C�-algebras all operations (addition, scalar and vector multiplication,
inverse of vector multiplication, star map) are continuous on their domains
of definition

• BLoppH q is C�-algebra of bounded linear operators on some Hilbert
spaceH , star operation is taking adjoint of operator

• Weyl system pA,W q of symplectic vector space pV, ωq consists of C�-
algebra A with unit 1 and Weyl map W : V Ñ A such that for all
ϕ,ψ P V Weyl relations are fulfilled:

W p0q � 1 (2.6)
W p�ϕq � W pϕq� (2.7)

W pϕqW pψq � eiωpϕ,ψq{2W pϕ� ψq (2.8)

i.e. Weyl map W represents additive group V up to twisting factor
eiωpϕ,ψq{2,

Weyl map W in general injective, but not continuous, A not separable,
W pϕq is unitary for all ϕ P V , tW pϕquϕ P V are linear independent

• xW pV qy � A is complex linear span of all elements tW pϕuϕ P V is closed
under vector multiplication and star/adjoint, completing it in norm of C�-
algebra A yields C�-subalgebra: the Weyl algebra WW pAq of A with
respect to Weyl map W

• let pS,ΩSq be symplectic vector space with complex structure pJ inducing
inner product as in previous section via

x � , � yS � 1
2~

ΩS
�
p pJ � ip1q�, �	

now we can perform Fock construction of previous section and obtain
Hilbert space FsympH 0q and self-adjoint operators pΩSpφ, 
q
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• Weyl map W : S Ñ BLoppFsympH 0qq yielding unitary operators given
by

zWpφq � exp ipΩSpφ, 
q
• key fact about this construction is that, although symmetric Fock space
FsympH 0q and observables pΩSpφ, 
q do depend on choice of complex struc-

ture pJ , the Weyl algebra WW

�
BLoppFsympH 0qq

	
does not! i.e. even

if complex structures pJ1 and pJ2 define unitarily inequivalent QFTs, the
induced Weyl algebras W1 and W2 are isomorphic

• this fact allows us to define fundamental observables for QFT in curved
spacetime as elements of the Weyl algebra W � WW

�
BLoppFsympH 0qq

	
constructed from symplectic vector space of solutions S using arbitrary
complex structure pJ

• algebraic state of quantum field then defined as linear map Y : W Ñ
C satisfying

positivity condition: Y pw�wq ¥ 0 @w PW
normalization: Y p1q � 1

• algebraic state Y is called mixed if it can be written as sum of states
Y1 � Y2

Y � c1Y1 � c2Y2 c1,2 ¡ 0

else it is called pure

• W contains only fundamental (linear) observables, however in addition to
these there are other physically relevant observables in theory, e.g., energy-
momentum tensor T not represented as element ofW, thus we should view
W as in some sense minimal collection of observables which is sufficiently
large to formulate theory
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• in order to get additional observables, later enlarge Weyl algebra and/or
restrict abstract notion of state, e.g., restricting to states satifying Hadamard
condition appears necessary for definition of energy-momentum tensor

• even though it has simple form, checking positivity condition for a possible
state is nontrivial task, not sufficient to check it for basis of W because
positivity condition is nonlinear in w

• if system is in mixed state with each pure state |ψky occurring with prob-
ability pk then mixed state represented by density operator = density
matrix written

ρ̂ �
¸
k

pk|ψky xψk|

tr ρ̂ �
¸
k

pk � 1

expectation value: x pOyψ � xψ| pO|ψy � °
k

pk xψk| pO|ψky � tr pρ̂ pOq
• consider relations between algebraic notion of states and notion of states

in Fock construction

• given any Hilbert space FsympH 0q carrying a representation R : W Ñ
BLoppFsympH 0qq of the considered Weyl algebra W, for any (mixed or
pure) state in FsympH 0q there is unique density matrix ρ̂ : FsympH 0q Ñ
FsympH 0q

• obtain algebraic state Yρ̂ : W Ñ C by

Yρ̂pwq � tr
�
ρ̂ Rpwq�

thus for each state in each possible Fock construction there is a corre-
sponding algebraic state

• converse of this result also holds:

• GNS construction: (Gelfand-Naimark-Segal) letW be C�-algebra with
unit and a state Y : W Ñ C, then there exist a Hilbert space H , a
representation R : W Ñ BLoppH q and a vector |ψY y P H such that

Y pwq � xψY |Rpwq|ψY y @w PW

Hilbert space, representation and vector are unique up to unitary equiv-
alence, additional property: |ψY y is cyclic, i.e., vectors tRpwq|ψY yuw PW
are dense subspace of H
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• sketch of GNS construction: first use state Y to define non-negative, bi-
linear map

@ � , � DW : W �W Ñ C@
v, w

D
W � Y pv�wq

(after factoring out kernel of Y ) this defines positive definite inner product
on (quotient space of) Weyl algebra W

• complete (quotient space of)W in norm induced by inner product, thereby
get GNS Hilbert space H � W

• letting (quotient space of) W act upon itself by vector multiplication and
extending this action continuously to H we get representation R : W Ñ
BLoppH q by Rpwq � w for all w PW

• cyclic vector |ψY y P H is unit 1 of W

• GNS construction expresses both pure and mixed algebraic states as pure
states in GNS Hilbert space, however the GNS representation of W is
irreducible if and only if algebraic state is pure

• in usual Hilbert space approach observable represented by self-adjoint
operator pA : H Ñ H , with real eigenvalues αk and eigenvectors
|aky, by spectral theorem it has associated family of projection operatorspPk : H Ñ Vk projecting onto the eigenspace Vk � H spanned by
eigenvectors of eigenvalue αk

• if system is in normalized state |ψy, then probability that measurement
of pA yields value in interval I � R is given by || pPI |ψy ||2 where pPI is
projection operator of pA for interval I:

pPI � αk P I¸
k

pPk
• more general: in Heisenberg representation, let state be represented by its

density matrix ρ̂, normalized: tr ρ̂ � 1, then probability that measure-
ment of self-adjoint observables pA1, ..., pAn made at times t1   ...   tn will
yield results lying in intervals I1, ..., In is given by

tr p pPn... pP1 ρ̂ pP1...
pPnq

with pPk denoting here the projection operator of pAkptkq on interval Ik,
this equation contains all available information in standard quantum me-
chanical measurement theory, in order to have complete formulation of
quantum theory we must provide some analog of this equation
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• in algebraic approach for arbitrary normalized state Y probability that
measurement of self-adjoint observables pA1, ..., pAn made at times t1  
...   tn will yield results lying in intervals I1, ..., In can be defined by

lim
j1,...,jn Ñ 8

Y
�
pQ1qj1 pÂ1q...pQnqjn pÂnqpQnqjn pÂnq...pQ1qj1 pÂ1q

	
wherein tpQkqjk pÂkqujk P N is any sequence of polynomials in pAk such that
polynomials tpQkqjk pxqu are uniformly bounded on spectrum of pAk and
converge on spectrum of pAk to characteristic function 1Ik

of interval Ik

1I pxq �
#

1 : x P I

0 : x R I

• evaluating this definition of probability in GNS representation shows that
the limit exists and equals what would be obtained from usual QM formula
in GNS representation, or in any other representation of Weyl algebra W
in which algebraic state Y can be realized as density matrix

• thus algebraic definition of probability is equivalent to putting observables
into any representation and use standard Hilbert space rule

• however the algebraic definition of measurement probability ensures inde-
pendence from representation

• thus probabilities for outcomes of any sequence of measurements of ob-
servables in W well defined in algebraic approach
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