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Fock quantization in a curved spacetime

let (M, g) be globally hyperbolic spacetime, £ — M be vector bundle
over M such that section ¢ e CZ5,, (M, E) represents a field configuration
on spacetime, e.g., real Klein-Gordon field

C* (M, E) smooth sections, i.e., maps s : M — FE such that mros =
Idy, CL (M, E) smooth sectlons of E with compact support = test

comp
sections on F

consider as equation of motion wave equation ]3q5 = « with normally
hyperbolic operator P : C*(M,E) — C*(M,E) acting on sections ¢
in fiber bundle M — E, P and « given, ¢ to be found

linear differential operator of second order P: C* (M,E) - C*(M,E)
is called normally hyperbolic if for local coordinates (!, ...,2™) on M
and a local trivialization of E' it writes as

Z 9@ sz oxd Z Aj( Be)

1,j=1

with A; and B matrix-valued coefficients depending smoothly on = and
(g% the inverse matrix of (gij = {04, Opi s

examples of normally hyperbolic operators: d’Alembert operator 0, square
of Dirac operator D?, §d + d§ with exterior derivative d and codifferential

0

Theorem (in Bir, Ginoux, Pfiffle): let (M, g) globally hyperbolic
Lorentzian manifold with metric connection V, ¥ < M spacelike Cauchy
surface, n future directed timelike unit normal field along ¥, E vector

bundle over M and P normally hyperbolic operator acting on sections in
E

then for each ¢, xo € C, E) and each a e CL, (M, E) there exists

comp( ’ comp

unique solution ¢ e C* (M, E) of the Cauchy problem, i.e., ¢ satisfies

)

ﬁ’(b =«
dls = do
(vn¢)|2 = Xo

and supp ¢ € JM(K) with K = supp ¢y U supp xo U supp a

and the map sending («, @g, xo) to unique solution ¢ of Cauchy problem
is continuous and linear

point in classical phase space P consists of test field configuration ¢g and
test momentum 7y on Cauchy surface 3, we assume that 7 depends on ¢

only via (V,¢)
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e moreover consider only systems with linear equations of motion and con-
figuration space C being vector space, P = T*C thus vector space, too,
therefore at any point x € P we can identify T, P with P itself, thus sym-
plectic form Qp on P under this identification can be seen as bilinear map
Qp : PxP - R

e S is space of solutions of wave equation which arise from initial data in
P, also vector space because equations of motion linear

e by theorem above each point (¢g, ) e P in phase space gives rise to
unique element in space S of solutions, thus we can identify P and S,
moreover S is independent of choice of Cauchy surface ¥

o write ¢|y = ¢

e let phase space P be equipped with symplectic structure Qp : P xP —
R, for Klein-Gordon field given by

=

Qp((67.77), (6am3)) = fdv (162 — M)

P

e if 1 and ¢- are solutions of the equation of motion, then Qp((qﬁf , 7r12)7 ((b; , 7r§ )

is conserved in time, i.e., yields same value for all Cauchy surfaces ¥; of
chosen foliation of spacetime M,

e therefore Qp induces symplectic mapping s: S xS — R via

=

Qs(é1,62) = (6], 7)), (d5,72))

e fixing (¢2,7TE) e P we can view Qp((¢2,ﬁz), o) as linear function on P
(and thus as linear observable) and fundamental Poisson brackets on P
then can be expressed as

=

{2p((01,77),0), Qp((92,73),9)} = —Qp((6), 1), (67,73))

e want to construct bosonic QFT in which functions Qp((gbZ , 7T2)7 e) on clas-
sical phase space P are irreducibly represented by operators ﬁp(((bz , 7r2), o)
(whole object is operator even though we write the hat only above Q)
satisfying commutation relations corresponding to fundamental Poisson
brackets:

= ~

[Qp (61, 71),9), Dp((ds,75),0)] = —ihiQp (61,71 ), (65, 75)) T
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e using correspondence between phase space P and solution space S equiv-
alently we can look for operators

[Qs(¢1.0), Qs(d2,0)] = —ihQs(¢1,¢2) 1

e Hilbert space in QFT on flat spacetime constructed using positive and
negative frequency solutions, however in general curved spacetime there is
no naturally preferred way of defining these

e now introduce compatible complex structure J on symplectic vector
space (S,Qs), i.e., linear operator J : S — & fulfilling J2 = —1 and
Qs(P1,02) = Qs(Jp1, J¢2) for all ¢12 € S, and thus defining a positive

~

definite metric g on S via p(-,-) = Qs(J -, )

e this induces a Hermitian complex inner product on solution space S:

o s = gl ) = o) = 505 ((7—i)-,)

e complex structure J naturally splits complexification of solution space
S¢ = S @S into positive and negative frequency subspaces:

positive frequency vectors: ¢™ :

1 o~ -
§(¢ —iJ¢) = ¢~
1 ~ -
negative frequency vectors: ¢~ = §(¢+U¢) = ¢*
e these subspaces are orthogonal (¢], ¢, s = O for all p12¢ S, ¢p* = ¢~
and complementary ¢ = ¢+ + ¢~

e one-particle Hilbert space # of theory is positive frequency subspace
of S¢ with inner product induced by the one of S:

1> 2, = (15 02)s = =1 Os(6T,63) = —+ (97, 6%)

(respectively its Cauchy-completion with respect to norm induced by inner
product)

e only ingredient needed to construct one-particle Hilbert space #Hj from
symplectic vector space of solutions (S, {2s) is complex structure J

e themap K: S — Hy defined by K¢ = ¢T is a linear bijection, its
image is dense subspace of H

e Hilbert space # of QFT is symmetric Fock space:

Foym(Ho) = é‘) (él() ﬂo)

n =0 \sym
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e symmetrized tensor product ®g,Ho of Hy is subspace of n-fold tensor
product consisting of totally symmetric maps

and @4, = C

e establish abstract index notation for Hilbert spaces: given some Hilbert
space # we can construct its complex conjugate #, its dual space #* and
its complex conjugate dual #H*

e denote elements of these spaces by:

3 9 i I
o? ot = da ba = b4

e Riesz’ Lemma: for every element ¢4 of #* exists unique element ¢4 ¢
such that

pa(s) = (%, o)y

i.e., every bounded linear map # — C is of form "take inner product
with some fixed vector” Riesz’ lemma provides antilinear bijection between
Hilbert space and its dual

_ ;o —A

by Riesz lemma we can identify # with #*, i.e. ¢ = ¢ with ¢4, and
H* with #H, ie. ¢ with ¢4 = ¢4, therefore we do not need to use
primed indices, can write inner product

@A, oMy, = a0”

denote elements of @"# as ¢ A and elements of @ H* respectively
'{]-[ as wAl:--wAn

. o tiaf AALAn s A
elements of ®(,,, # satisfy ¢ = M )

e vector in symmetric Fock Fyym(#Hp) space in abstract index notation can
be written as

U= (¢t e gdiedn )
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with norm given by

WP =W, Oy = P+ Yy 0™ +3hy, 0, 0P+ <0

e now for element ¢4 e #Hy and corresponding & 4, € Hy define creation a'
and annihilation a operators: Fyym(Ho) — Feym(Ho)

a'(e)w
a(g) v

(0, e, N2 g hgpAa) 3 glArpaada) -y
a0, V28, 142 \BE, pArdzds )

Il

which satisfy commutation relations [a(€), a'(n)] = €,4n* 1

e represent linear classical observables Qs (¢, e) by operator

Os(0.#) = in(a(Ke) - a'(Ke)) = in(a(%) ~a'(6"))

then operators are self-adjoint and indeed satisfy desired commutation
relations:

[Qs(n,e), Qs(€,0)] = —ihQs(n, €)1

e calculating these commutation relations we only need to use general prop-
erties of inner product, which is induced by complex structure .J, thus
one gets representation of the CCR for any choice of complex structure,
freedom to choose J represents freedom to chose quantum representation
of the CCR

e
(3®,a6)
() HEEMG)

e we are free to choose complex structure J , there is no naturally preferred
J, since complex structure exactly determines Fock space construction,
which in turn defines notion of particles, thus there is no natural notion
of particles in general, curved spacetime
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e only in stationary spacetimes symmetries or other structure can be ex-
ploited to naturally select some preferred complex structure

e if spacetime is nearly stationary, then there exists approximate notion of
particles, it becomes ambiguous only for modes with frequency smaller
than inverse timescale for change of metric, thus in laboratories on earth
ther is no problem employing particle concept

e however in principle notion of particle in general curved spacetime is at
best approximate

e unitary map U : # — #’ is isomorphism between Hilbert spaces pre-
serving the inner product: (U, U¥s),,, = (¥, W), for all ¥y e H

e quantum theory consisting of Hilbert space # together with set of opera-
tors O, : H — 9 is unitary equivalent to quantum theory (%', O,,)
if there exists a unitary map U : # — 4 such that O, = U*10;U

e unitary equivalent quantum theories are physically equivalent in sense that
state U e # in quantum theory (#,0,) has exactly same physical prop-
erties as state U¥ e #’ in quantum theory (}[’7(5;) (i.e., both generate
same matrix elements for operators)

e R is unitary representation of group G as operators on Hilbert space # if
R(g) is unitary operator on # for all g ¢ G

e working with relation

[Qs(¢1.0), Qs(da,0)] = —ihQs(¢1,¢2) 1

technical difficulties arise because self-adjoint operators can be unbounded
and thus not everywhere defined, therefore their composition and commu-
tators need not be well defined

e more convenient to work with exponentiated version, write W(¢) = expiQs(p, o)
and look for map turning W (¢) into operator W (¢) such that it is unitary,
varies continuously with ¢ (in strong operator topology) and as equivalent

of commutation relations satisfies Weyl relations:

Wo =1
_— _—
Wi-¢) = Wig)

—

W) W) = @02 (1

since W//'(7>) unitary, its action is well defined on whole Hilbert space

e Stone-von Neumann Theorem: If (S,() is a finite-dimensional sym-
plectic vector space and (#, I/I//(7>)) and (', m) are strongly continuous,
irreducible, unitary representations of the Weyl relations, then they are
unitarily equivalent
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e if Stone-von Neumann were valid also for QFT of infinite-dimensional
phase space P, then choice of complex structure J would lead to unitarily
equivalent theories and thus not affect physical predictions

e however if P is of infinite dimension, then different choices of J can indeed
yield unitarily inequivalent theories, Stone-von Neumann does not hold
here

e therefore in order to uniquely define the QFT for a general, curved space-
time it is essential to find some preferred unique unitary equivalence class
of complex structures J

e this seems possible only for spacetimes representing a closed universe, i.e.,
all Cauchy surfaces are compact, but for general curved spacetimes with
noncompact Cauchy surfaces no criterion to single out unique preferred
equivalence class of complex structures

e this problem is circumvented by algebraic approach to QFT which does
not require specification of preferred unitary equivalence class of J’s

2 Algebraic approach to quantization

e in usual approach to quantization, first states are constructed as vectors
in some Hilbert space and then observables are defined as operators acting
on these states

e algebraic approach reverses roles of states and observables in the sense
that first here first observables are constructed as elements of an abstract
algebra and then states are defined as objects acting on observables by as-
signing real number to each observable (in usual approach this corresponds
to taking expectation values)

e advantage of this approach is that it allows to treat all states, also states
arising in unitarily inequivalent QFT's, on equal footing, thereby it be-
comes possible to define theory without selecting preferred construction

e key observation in previous section which justifies algebraic approach is
that algebra of observables is the same for all Fock constructions of a
classical field theory, even for unitary inequivalent Fock constructions:
even if (Faym (H2),{Q%(0,0)}) and (Fugm (#2), {Q%(¢,#)}) are unitarily
inequivalent, the algebraic relations satisfied by observables {(AZ}S(QS,-)}
are same as those of {Q%(¢, ¢)}

e now formulate this mathematically precise, therefor introduce several struc-
tures

e C-algebra A = vector space over C with bilinear, associative vector mul-
tiplication: A x A — A, (a,b) — ab

e C*-algebra is C-algebra equipped with complete norm | |: A — R
and antilinear star map #: A — A, a +— o fulfilling for all a,b ¢ A:
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a** =a * is involution (2.1)
(ab)* = b*a™ (2.2)
Jab| <]a]|b| norm is submultiplicative (2.3)
[a*] = |a] * is isometry (2.4)

la*a] = Ja|? C*-property (2.5)

C*-subalgebra is subset of C*-algebra closed under all its operations:
addition, scalar and vector multiplication and star map

C*-algebra has at most one unit 1, i.e. al = la = a for all a € A it
fulfills 1* = 1 and 1| = 1

in C*-algebras all operations (addition, scalar and vector multiplication,
inverse of vector multiplication, star map) are continuous on their domains
of definition

BLop(#) is C*-algebra of bounded linear operators on some Hilbert
spacef{, star operation is taking adjoint of operator

Weyl system (A, W) of symplectic vector space (V,w) consists of C*-
algebra A with unit 1 and Weyl map W : V — A such that for all
v, ¢ V Weyl relations are fulfilled:

W) =1 (2.6)
W(—¢) = W(p)* (2.7)
W () W (1) = e P2 (0 + 1)) (2.8)

i.e. Weyl map W represents additive group V up to twisting factor
eiw(‘ﬂaw)/27

Weyl map W in general injective, but not continuous, A not separable,
W () is unitary for all ¢ e V, {WW(p)}, c v are linear independent

(W(V)) c Ais complex linear span of all elements {W (¢}, ¢ v is closed
under vector multiplication and star/adjoint, completing it in norm of C*-
algebra A yields C*-subalgebra: the Weyl algebra Wy, (A) of A with
respect to Weyl map W

let (S,Qs) be symplectic vector space with complex structure J inducing
inner product as in previous section via

Cods = 50 (07 -i0)-,)

now we can perform Fock construction of previous section and obtain
Hilbert space Fsym (o) and self-adjoint operators Qs(¢, o)



2 Algebraic approach to quantization

e Weyl map W: S — BLop(Fsym(#Ho)) yielding unitary operators given
by

—

Wig) = expiﬁs((b,o)

e key fact about this construction is that, although symmetric Fock space
Feym(#Ho) and observables Qs(¢, o) do depend on choice of complex struc-

ture .J, the Weyl algebra Wy, (BLop(}"Sym(}[o))) does not! ie. even

if complex structures jl and jg define unitarily inequivalent QFTs, the
induced Weyl algebras W; and W, are isomorphic

3L0p (’Fs\;—)

Fop (K2)
{Rie}

e this fact allows us to define fundamental observables for QFT in curved
spacetime as elements of the Weyl algebra W = Wy, (BLop(]:Sym(}[o)))

constructed from symplectic vector space of solutions S using arbitrary
complex structure J

e algebraic state of quantum field then defined as linear map Y : W —
C satisfying

positivity condition: Y(w*w) =0 YweW

normalization: Y(1) =1

e algebraic state Y is called mixed if it can be written as sum of states
Yi#Y,

Y = Y1 + Y, C1,2 > 0

else it is called pure

e W contains only fundamental (linear) observables, however in addition to
these there are other physically relevant observables in theory, e.g., energy-
momentum tensor 1" not represented as element of W, thus we should view
W as in some sense minimal collection of observables which is sufficiently
large to formulate theory
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e in order to get additional observables, later enlarge Weyl algebra and/or
restrict abstract notion of state, e.g., restricting to states satifying Hadamard
condition appears necessary for definition of energy-momentum tensor

e even though it has simple form, checking positivity condition for a possible
state is nontrivial task, not sufficient to check it for basis of WW because
positivity condition is nonlinear in w

e if system is in mixed state with each pure state |¢;) occurring with prob-
ability pr then mixed state represented by density operator = density
matrix written

p= > pkltr)
k

trp= =1
k

expectation value: (O), = (¢|Ol) = % Pk k|Olry = tr (50O)

e consider relations between algebraic notion of states and notion of states
in Fock construction

e given any Hilbert space Fyym (%) carrying a representation R : W —
BLop(Fsym(#o)) of the considered Weyl algebra W, for any (mixed or
pure) state in Fgym (Ho) there is unique density matrix p: Feym(Ho) —
Faym(#o)

e obtain algebraic state Y;: W — C by

Ys(w) = tr (p R(w))
thus for each state in each possible Fock construction there is a corre-
sponding algebraic state
e converse of this result also holds:

e GNS construction: (Gelfand-Naimark-Segal) let W be C*-algebra with
unit and a state Y : W — C, then there exist a Hilbert space %, a
representation R: W — BLop(#) and a vector [ty ) e # such that

Y(w) = Wy |R(w)|vy) Ywe W

Hilbert space, representation and vector are unique up to unitary equiv-
alence, additional property: |1y) is cyclic, i.e., vectors {R(w)|ty Y}w e w
are dense subspace of #
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sketch of GNS construction: first use state Y to define non-negative, bi-
linear map

Gy D WxW - C
(v, w>W = Y (v*w)

(after factoring out kernel of Y') this defines positive definite inner product
on (quotient space of) Weyl algebra W

complete (quotient space of) W in norm induced by inner product, thereby
get GNS Hilbert space # = W

letting (quotient space of) W act upon itself by vector multiplication and
extending this action continuously to # we get representation R: W —
BLop(#) by R(w) = w for all we W

cyclic vector |ty ) e #H is unit 1 of W

GNS construction expresses both pure and mixed algebraic states as pure
states in GNS Hilbert space, however the GNS representation of W is
irreducible if and only if algebraic state is pure

in usual Hilbert space approach observable represented by self-adjoint
operator A :  H — 9, with real eigenvalues «y and eigenvectors
|ax), by spectral theorem it has associated family of projection operators
f’k : H — Vj projecting onto the eigenspace Vi  #H spanned by
eigenvectors of eigenvalue oy

if system is in normalized state |1)), then probability that measurement
of A yields value in interval I < R is given by | P;|v) |* where Py is
projection operator of A for interval I:

ap €1
Pr= ) B
k

more general: in Heisenberg representation, let state be represented by its
density matrix p, normalized: tr p = 1, then probability that measure-
ment of self-adjoint observables A1, ..., A, made at times t; < ... < t,, will
yield results lying in intervals Iy, ..., I,, is given by

with ]3k denoting here the projection operator of A\k(tk) on interval Iy,
this equation contains all available information in standard quantum me-
chanical measurement theory, in order to have complete formulation of
quantum theory we must provide some analog of this equation
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e in algebraic approach for arbitrary normalized state ¥ probability that
measurement of self-adjoint observables Aj,..., A, made at times t; <
.. <ty will yield results lying in intervals I, ..., I,, can be defined by

lim Y((Ql)jl(/11)~~-(Qn)jn(An)(Qn)jn(An)»--(Ql)jl(/h))

J1--dn = 0

wherein {(Qk)j, (Ar)};j, ¢ N is any sequence of polynomials in A}, such that
polynomials {(Q%);, (=)} are uniformly bounded on spectrum of Ay and
converge on spectrum of Ay, to characteristic function 1y, of interval Iy

1: zel
li(z) =
0: xel
e evaluating this definition of probability in GNS representation shows that
the limit exists and equals what would be obtained from usual QM formula
in GNS representation, or in any other representation of Weyl algebra W
in which algebraic state Y can be realized as density matrix

e thus algebraic definition of probability is equivalent to putting observables
into any representation and use standard Hilbert space rule

e however the algebraic definition of measurement probability ensures inde-
pendence from representation

e thus probabilities for outcomes of any sequence of measurements of ob-
servables in W well defined in algebraic approach
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