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Notation

'spacetime’ RY.

@ For Simplicity we are going to work in the d-dimensional Euclidean
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Notation

@ For Simplicity we are going to work in the d-dimensional Euclidean
'spacetime’ RY.

@ The Fourier transform is defined as

dp

= [ Gt (P)e P, f(p) = [ ax )
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Notation

@ For Simplicity we are going to work in the d-dimensional Euclidean
'spacetime’ RY.
@ The Fourier transform is defined as
ddp —ipx d ipx
100 = [ Gorafle ™. Fp) = [ dixt(p)e”

@ The classical fields are labeled with a ¢

» — G-
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Effective Field Theories

@ Coarse Graining Procedure.
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Effective Field Theories

@ Coarse Graining Procedure.

@ The Renormalization Group.
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Effective Field Theories

@ Coarse Graining Procedure.
@ The Renormalization Group.

@ Exact Renormalization Group Equation.
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Coarse Graining Procedure

Consider, for simplicity the scalar case. We want to calculate the
spectation values of the observables of the theory, let say

(0) = / N D O(p)e™>

This quantities are infinite.
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Coarse Graining Procedure

Consider, for simplicity the scalar case. We want to calculate the
spectation values of the observables of the theory, let say

() = / N DéO()e (1)

This quantities are infinite. Renormalization is the solution. Consider a
cutoff A, then (1) becomes

(0) = / MecaDéLON(B)e St (2)]

The degrees of freedom with momentum greater than A are integrated out.
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that is

But If we change the cutoff, A — A — dA, the results must be the same.
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that is

But If we change the cutoff, A — A — dA, the results must be the same.

/nkg/\D¢kOA(¢)6‘_s" = /nkg/\—a/\D¢kO/\—6/\(¢)e_s"‘M (3)J
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But If we change the cutoff, A — A — dA, the results must be the same.
that is

/”kgAD¢kOA(¢)E_SA = /”kgA—aAD¢kOA—5A(¢)G_SA‘”‘ (3)}

Therefore, for each change in the cutoff, the explit form of the action and
the observable changes. If we fix

(0) =1 (4)

from some experiment, then we can know how the action and the
observable are in a lower momentum scale. This procedure is called the
Coarse Graining.

In general, we don't know how the action is going to change.
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The Effective Action

We define the genarating functional of the connected Green's functions as

(5)J
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The Effective Action

We define the genarating functional of the connected Green's functions as

the classical field

(5)

¢c(X) = 6_W

510 (6)
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The Effective Action

We define the genarating functional of the connected Green's functions as

W _ /D¢e—s+fdde¢’

the classical field

ow

Pe(x) = 5000

and the effective action

r=w-— / d¥x¢c(x)J(x)

which is the generating functional of the 1Pl Green's functions.
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Momentum Dependence

We want to integrate out degrees of freedom with momentum greater
than a cuttof A. For notation the cutoff from now is k. Therefore our
effective action depend on k

[Ty (8)

The way in which the action change with the scale is governed by the
renormalization group. If we want a general expression for the action at
any sacale, we have to consider an action, in principle, with infinite
coupling constants.
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Renormalization Group

Consider an effective field theory with a configuration space F. Let Q an
infinite smooth manifold, with local coordinates (g;) and R* the positive

real line parametrizing the momentum scale. The effective action is
defined as

[ FxQxRt —C 9)
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Renormalization Group

Consider an effective field theory with a configuration space F. Let Q an
infinite smooth manifold, with local coordinates (g;) and R* the positive

real line parametrizing the momentum scale. The effective action is
defined as

[ FxQxRt —C 9)

In the scalar case

[, gi, k] == Tk[¢, &i J

Remark: F x Q x R™ is the space of all theories, the Theory Space.
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What means infinite coupling constants?

Infinite coupling constants, is just a way to write the most general effective
action at any scale, for exameple if we have

Lo = 22(00 + 28247 (10
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What means infinite coupling constants?

Infinite coupling constants, is just a way to write the most general effective
action at any scale, for exameple if we have

Z,
Li= 22060 + 38247 (10)

v

at k' we can have

Z 1 1
L = (007 + ;&0 + ;1826 (11)

v
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What means infinite coupling constants?

Infinite coupling constants, is just a way to write the most general effective
action at any scale, for exameple if we have

Z,
Li= 22060 + 38247 (10)

v

at k' we can have

Z 1 1
Lo = 204V + 5810° + 7 820" (1)

v

hence, we can think in a general expresion like

L= 2067 + Y sk (12)
i=1
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Which are the essential coupling constants?

A natural question: These infinite coupling constants are independent of
field redefinitions? The answer is not. The coupling constants is split in
two sets, one for these which can be absorbed by a field redefinition, the
other for its complement. These are called inessential and essential.
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Which are the essential coupling constants?

A natural question: These infinite coupling constants are independent of
field redefinitions? The answer is not. The coupling constants is split in
two sets, one for these which can be absorbed by a field redefinition, the
other for its complement. These are called inessential and essential.

The theory is invariant under G, coordinate transformations of F,
(redefinition of the fields).

6 — ¢(6) )
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Which are the essential coupling constants?

A natural question: These infinite coupling constants are independent of
field redefinitions? The answer is not. The coupling constants is split in
two sets, one for these which can be absorbed by a field redefinition, the
other for its complement. These are called inessential and essential.

The theory is invariant under G, coordinate transformations of F,
(redefinition of the fields).

6 — ¢(6) )

For this transformation we can find new coupling constants g’ such that

M[9/(0), 8] = Telo &) (13)

This is a local action of G on Q.
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We split the coupling constants

{ei} = {&} U {as} )

where {g;} are invariant under G, and {g} transform non trivially. We
said that {g;} and {g;} are local coordinates of the stable and unstable
manifold respectivelly.
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We split the coupling constants

(g} = {&} U{e) J

where {g;} are invariant under G, and {g} transform non trivially. We
said that {g;} and {g;} are local coordinates of the stable and unstable
manifold respectivelly.

We also have invarianza under rescaling, i.e.

Mo [b% (), b%gi] = Tu[6, ] (14) |

where b € RT, dy and d; are the canonical dimension of ¢ and g;.
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Expansion of the Effective Action

The most general form of the effective action is

elo. & = 3 &i(k)Pi(9) (15)J

where P are polynomials in the ¢'s.
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Expansion of the Effective Action

The most general form of the effective action is

elo. & = 3 &i(k)Pi(9) (15)J

where P are polynomials in the ¢'s.
The evolution of this action is governed by the beta functions

k—rk Zﬂ, (k)Pi(¢ (16)}
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Expansion of the Effective Action

The most general form of the effective action is

ilo. &1 = > &i(k)Pi(9) (15>J

where P are polynomials in the ¢'s.
The evolution of this action is governed by the beta functions

k—rk Zﬁ, (k)Pi(¢ (16)}

If we want to know how is the behaviour of the theory at any scale, we
have to solve for infinite beta functions.
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ERGE

The k-dependence in the effective action can be put in the following way

e Wi — /D¢e—S—Ak5+fdde¢

(17)
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ERGE

The k-dependence in the effective action can be put in the following way

e—Wk _ /D¢e—5—Ak5+f dixJ¢ (17)

My = Wie— / d¥%¢c(x)J(x) (18)
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ERGE

The k-dependence in the effective action can be put in the following way

Wk /D¢e—5—Ak5+fdde¢ (17)
i = Wi [ dxoc()(x) (18)
Me = Wk—/ddx¢c(x)J(x)—Ak5 (19)
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ERGE

The k-dependence in the effective action can be put in the following way

W _ /D¢e—5—Ak5+fd"xJ¢ (17)
M = W,— / d¥%¢c(x)J(x) (18)
Mo = Wi [ dhoc( () - A (19)

where

dX
AS = [ GaaRHeIsEIE = 5 [ dxaRu(-2)o0)  (20)

is the cutoff supressing the IR modes with p? << k2.
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We are just interested in the asymptotic behaviour of Ry (p?),

k2 p? << k?
Ri(p?) = { P

0 p%>>k?
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We are just interested in the asymptotic behaviour of Ry (p?),

k? p? << k?
2y

Rk(P)—{ 0 p?>> K2
Two possible forms are

Ri(p®) = (K —p*)o(k* — p%)
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We are just interested in the asymptotic behaviour of Ry (p?),

k? p? << k?
0 p%>>k?

Ru(e?) = {

Two possible forms are

R(p?) = (K> —p*)o(k* - p?)

2
R (P2) = 2 IZQ
eP’/k* — 1
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Remark

© Note that there is not a lattice background.
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Remark

© Note that there is not a lattice background.
@ This is in fact an effective action.
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Remark
© Note that there is not a lattice background.
@ This is in fact an effective action.
© A smooth or singular cutoff is a matter of convinience to simplify
calculations.
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Remark
© Note that there is not a lattice background.
@ This is in fact an effective action.
© A smooth or singular cutoff is a matter of convinience to simplify
calculations.
@ The modification of the connected Green's functions is in the mass of
the propagator.

Alejandro Soto Posada () Preliminaries for Asymptotic Safety 16 / 35



Connected Green's Functions

In the Klein-Gordon case

1 dvp
S+ AkS = 5/ (2m)d

(P* + m* + Ri(p?)) () + ...
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Connected Green's Functions

In the Klein-Gordon case

d
5+Ak5=%/(2’7§2(p2+m2+m(p2)) ()P + .. J

therefore the new propagator is

I
p? + m? + Ri(p?) J

Hence Wy is the generating of the C.G.F.
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Asymptotic action

We have two asymptotics limits for the action,

lim Fk lim I'k
k—o00 T k=0
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Asymptotic action

We have two asymptotics limits for the action,

lim Fk, IlimO I'k (21)

k—o0
to know what these limits are, is convinient to write

Oy

e Tk — /D¢e_5+f d9x(p—¢c) 55& e J dIx(p=d)Ri(¢—¢c) (22)J
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If Kk — 0, then Rk(pz) — 0, hence
Effective Action

lim T, = lim (Wk —/ddquC(X)J(x) —AkS)

k—0 k—0

= W- / dxpc(x)J(x) =T
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If Kk — 0, then Rk(pz) — 0, hence

Effective Action

lim e = lim (Wk —/ddquC(X)J(x)—AkS)

k—0
W — / d¥%¢c(x)J(x) =T

for k — oo we have Ry (p?) — k2, then
e [ dx(0=0)R(9—0c) _, o=k [ dIx(¢—¢c)?

— (¢ —oc)

Preliminaries for Asymptotic Safety
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then we get from (22)

Bare Action

0 — — d(b—cbe) Sk
lim e — [ Dgs(¢ — pc)e 5T X075
k—oo
— e_s
iml, — S
k—o0
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The action between these two limits is given by

ol
kﬁ = z,: Bi(k)Pi(¢)
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The action between these two limits is given by

OF
o Zﬂ, (K)Pi(o (23)
the left hand side of this equation satisfy
Exact Renormalization Group Equation
where I'i has the matrix elements
M(xy) = T
6p(x)de(y)
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and Ry has the matrix elements

Ri(x,y) = Ru(=02)3(x — y)
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and Ry has the matrix elements
Ri(x,y) = Ri(—02)5(x — y)

and the trace of some function (matrix) F(x, y) is defined

Tr[F] = /ddxF(x,x)
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The equation which we want to solve to obtain the flow of the essential
beta functions {(;} is

%Tr (2 +Re) ™ aR"]

Zﬁ,(k YPi(4) (25)}
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Derivation of the ERGE

ofk oW
ok T K ek
k S AS+[ dxb)
- 2e— Wk /D¢e KSH Ix0d o
IRk (—2
/ axdy6(:)6(7) B y)

where

<N> — 1 /D¢Ne‘5_Ak5+f dx¢J

e~ Wk
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The two-point Green function is

2 Wi J]
S = 50
= {9060 — (60H))
with this
k% = %/ddxddka(x,y)kW-l-
5 [ aay 000y o )
_ PR 2E)
= /dde k(?k +

2
5/ ddx¢c(x)kw¢sc<y)
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ka_Fk _ 1 [Gkk(mk} /dd e 8Rk( 82)¢C()

Ok 2
hence or 1 OR
k k
"ok T2 [Gkk Dk }
But
[ 6uix. 2 z.) = 3(x.9)
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then

finally we get

Gy = (Fi + Rk)_

1
8rk . ]. 2 -1 8Rk
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Scalar Theory

Consider an effective action
1
My = /ddx (5(&;5)2 + vk[¢2]) (27)

then
MRoy) = (=05 +2Vile?] + 46 Vi{[67]) 6(x — y)
With a function P(x) = x + R(x) we have

M+ Ry = P+2V, + 40V
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ERGE

with t = log(k/ko) for some fixed ko

1 P
3trk=§Tr< 0c Py

P +2V] +442V)!

)
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In general, for a function W(—0?) we have

THW(=0?)) = /ddx/

(2
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In general, for a function W(—0?) we have

d
W) = [dh [ SR we)

= [ | %W(pz)

Yy

Alejandro Soto Posada () Preliminaries for Asymptotic Safety 30/ 35



In general, for a function W(—0?) we have

(-t = [a'x [ ;’;Pdw(pz)epu—y)

:/dd (z)dvv(2)
= [t [ Gt We)

/ /0 27Td/2
T(d/2)

x=y

with
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then we have

Tr(W(—9%)) = Ag / d¥xQq2(W)

(28)J
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then we have

THW(~0)) = Ag [ &*xQua(W) (28)J
where
A o~ L

(4m)d

ﬁ /0 b dzz"1W(z)
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The ERGE equation now is

1 0P
O Vi = 5AdQq2 ( Lk

Pk+2v;+4¢2v;'>

(29)J
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The ERGE equation now is

o 1 ath

we need en explicit form of V) to solve this equation.
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The ERGE equation now is

1 0: Py
Vi = A
O:Vie= 3 de/z(Pk+2v;+4¢2v;>

(29)J

we need en explicit form of V) to solve this equation.
With Z, symmetry we consider

Vi(9%) = D Aond™

n=1

(30)J
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The ERGE equation now is

1 0: Py
Vi = A
O:Vie= 3 de/z(Pk+2v;+4¢2v;)

(29)J

we need en explicit form of V) to solve this equation.
With Z, symmetry we consider

Vi(9%) = D Aond™

n=1

(30)}

where
1 90"V,

A = o)

¢?=0
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As a first calculation, consider a truncation of the serie. Just the first two
terms. The beta function equations are

9:P

B = —6MAQqp (m) -
0:P

Ba = T203AqQu) (m) >
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As a first calculation, consider a truncation of the serie. Just the first two
terms. The beta function equations are

0:P

B = —6MAQu (m) )
O:+P

Ba = T203AqQu) (m) >

INn order to look tbe Wilson-Fisher fixed point, we put d = 3. With
A = k—2X\p and As = k=1 A4, we obtain

= 2% —6Mgk A (Pe+2x2)?
65 2 sk AsQsy ((Pk"'z)‘z)z
) ) . ath
- 222kA (Pr +2)0)3
B, Ag + T203kA3 Q32 ((Pk+2)\2)3)
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Now, with Ri(z) = (k? — z)0(k® — z) we have

0 0Pk N\ _ 2 1 oty
"\ (P + a) n! (1+ 3)
with 3 = k—?a.
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Now, with Ri(z) = (k? — z)0(k® — z) we have

Q Ot P _ E 1 k2(n—l+1)
"\ (Px + a) n! (1+3)

with 3 = k=2a.Then

- < 1 2%
Othy = 20— ———
. « 1 2432
Oda = —hgt 08
tN\4 4 7T2 (1+2>\2)3

Alejandro Soto Posada () Preliminaries for Asymptotic Safety 34 /35



The non trivial fixed point is given by

Fixed Point
- 1
~ 7272
Moo= g (34)
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THANKS
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