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Notation

For Simplicity we are going to work in the d-dimensional Euclidean
’spacetime’ Rd .

The Fourier transform is defined as

f (x) =

∫
ddp

(2π)d
f (p)e−ipx , f (p) =

∫
ddxf (p)e ipx

The classical fields are labeled with a c

φ→ φc .
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Coarse Graining Procedure

Consider, for simplicity the scalar case. We want to calculate the
spectation values of the observables of the theory, let say

〈O〉 =

∫
ΠkDφkO(φ)e−S (1)

This quantities are infinite.

Renormalization is the solution. Consider a
cutoff Λ, then (1) becomes

〈O〉 =

∫
Πk≤ΛDφkOΛ(φ)e−SΛ (2)

The degrees of freedom with momentum greater than Λ are integrated out.
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But If we change the cutoff, Λ→ Λ− δΛ, the results must be the same.
that is

∫
Πk≤ΛDφkOΛ(φ)e−SΛ =

∫
Πk≤Λ−δΛDφkOΛ−δΛ(φ)e−SΛ−δΛ (3)

Therefore, for each change in the cutoff, the explit form of the action and
the observable changes. If we fix

〈O〉 = 1 (4)

from some experiment, then we can know how the action and the
observable are in a lower momentum scale. This procedure is called the
Coarse Graining.
In general, we don’t know how the action is going to change.
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The Effective Action

We define the genarating functional of the connected Green’s functions as

e−W =

∫
Dφe−S+

∫
ddxJφ, (5)

the classical field

φc(x) =
δW

δJ(x)
(6)

and the effective action

Γ = W −
∫

ddxφc(x)J(x) (7)

which is the generating functional of the 1PI Green’s functions.
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Momentum Dependence

We want to integrate out degrees of freedom with momentum greater
than a cuttof Λ. For notation the cutoff from now is k. Therefore our
effective action depend on k

Γ→ Γk (8)

The way in which the action change with the scale is governed by the
renormalization group. If we want a general expression for the action at
any sacale, we have to consider an action, in principle, with infinite
coupling constants.
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Renormalization Group

Consider an effective field theory with a configuration space F . Let Q an
infinite smooth manifold, with local coordinates (gi ) and R+ the positive
real line parametrizing the momentum scale. The effective action is
defined as

Γ : F ×Q× R+ −→ C (9)

In the scalar case

Γ[φ, gi , k] := Γk [φ, gi ]

Remark: F ×Q× R+ is the space of all theories, the Theory Space.
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What means infinite coupling constants?

Infinite coupling constants, is just a way to write the most general effective
action at any scale, for exameple if we have

Lk =
Zφ
2

(∂φ)2 +
1

2
g2

1φ
2 (10)

at k ′ we can have

Lk ′ =
Zφ
2

(∂φ)2 +
1

2
g1φ

2 +
1

4!
g2φ

4 (11)

hence, we can think in a general expresion like

Lk =
Zφ
2

(∂φ)2 +
∞∑
i=1

gi (k)φi (12)
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Which are the essential coupling constants?

A natural question: These infinite coupling constants are independent of
field redefinitions? The answer is not. The coupling constants is split in
two sets, one for these which can be absorbed by a field redefinition, the
other for its complement. These are called inessential and essential.

The theory is invariant under G, coordinate transformations of F ,
(redefinition of the fields).

φ→ φ′(φ)

For this transformation we can find new coupling constants g ′i such that

Γk [φ′(φ), gi ] = Γk [φ, g ′i ] (13)

This is a local action of G on Q.
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We split the coupling constants

{gi} = {gı̂} ∪ {gı̄}

where {gı̄} are invariant under G, and {gı̂} transform non trivially. We
said that {gı̂} and {gı̄} are local coordinates of the stable and unstable
manifold respectivelly.

We also have invarianza under rescaling, i.e.

Γbk [bdφ(φ), bdi gi ] = Γk [φ, gi ] (14)

where b ∈ R+, dφ and di are the canonical dimension of φ and gi .
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Expansion of the Effective Action

The most general form of the effective action is

Γk [φ, gi ] =
∑

i

gi (k)Pi (φ) (15)

where P are polynomials in the φ′s.

The evolution of this action is governed by the beta functions

k
∂

∂k
Γk =

∑
i

βi (k)Pi (φ) (16)

If we want to know how is the behaviour of the theory at any scale, we
have to solve for infinite beta functions.
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ERGE

The k-dependence in the effective action can be put in the following way

e−Wk =

∫
Dφe−S−∆kS+

∫
ddxJφ (17)

Γ̃k = Wk −
∫

ddxφc(x)J(x) (18)

Γk = Wk −
∫

ddxφc(x)J(x)−∆kS (19)

where

∆kS =
1

2

∫
ddx

(2π)d
Rk(p2)|φ(p)|2 =

1

2

∫
ddxφ(x)Rk(−∂2

x )φ(x) (20)

is the cutoff supressing the IR modes with p2 << k2.
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We are just interested in the asymptotic behaviour of Rk(p2),

Rk(p2) =

{
k2 p2 << k2

0 p2 >> k2

Two possible forms are

Rk(p2) = (k2 − p2)θ(k2 − p2)

Rk(p2) =
p2

ep2/k2 − 1
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Remark
1 Note that there is not a lattice background.

2 This is in fact an effective action.

3 A smooth or singular cutoff is a matter of convinience to simplify
calculations.

4 The modification of the connected Green’s functions is in the mass of
the propagator.
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Connected Green’s Functions

In the Klein-Gordon case

S + ∆kS =
1

2

∫
ddp

(2π)d

(
p2 + m2 +Rk(p2)

)
|φ(p)|2 + . . .

therefore the new propagator is

i

p2 + m2 +Rk(p2)

Hence Wk is the generating of the C.G.F.
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Asymptotic action

We have two asymptotics limits for the action,

lim
k→∞

Γk , lim
k→0

Γk (21)

to know what these limits are, is convinient to write

e−Γk =

∫
Dφe−S+

∫
ddx(φ−φc )

δΓk
δφc e−

∫
ddx(φ−φc )Rk (φ−φc ) (22)
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If k → 0, then Rk(p2)→ 0, hence

Effective Action

lim
k→0

Γk = lim
k→0

(
Wk −

∫
ddxφc(x)J(x)−∆kS

)
= W −

∫
ddxφc(x)J(x) = Γ

for k →∞ we have Rk(p2)→ k2, then

e−
∫

ddx(φ−φc )Rk (φ−φc ) → e−k2
∫

ddx(φ−φc )2

→ δ(φ− φc)
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then we get from (22)

Bare Action

lim
k→∞

e−Γk →
∫
Dφδ(φ− φc)e−S+

∫
ddx(φ−φc )

δΓk
δφc

→ e−S

lim
k→∞

Γk → S
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The action between these two limits is given by

k
∂Γk

∂k
=
∑

i

βi (k)Pi (φ) (23)

the left hand side of this equation satisfy

Exact Renormalization Group Equation

k
∂Γk

∂k
=

1

2
Tr

[(
Γ2

k +Rk

)−1
k
∂Rk

∂k

]
(24)

where Γ2
k has the matrix elements

Γ2
k(x , y) =

δ2Γk

δφ(x)δφ(y)
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and Rk has the matrix elements

Rk(x , y) = Rk(−∂2
x )δ(x − y)

and the trace of some function (matrix) F (x , y) is defined

Tr [F ] =

∫
ddxF (x , x)
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The equation which we want to solve to obtain the flow of the essential
beta functions {βı̄} is

1

2
Tr

[(
Γ2

k +Rk

)−1
k
∂Rk

∂k

]
=
∑

i

βi (k)Pi (φ) (25)
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Derivation of the ERGE

k
∂Γ̃k

∂k
= k

∂Wk

∂k

=
k

2e−Wk

∫
Dφe−S−∆kS+

∫
ddxφJ ×∫

ddxddyφ(x)φ(y)
∂Rk(−∂2

x )

∂k
δ(x − y)

=
1

2

∫
ddxddy〈φ(x)φ(y)〉k ∂Rk(x , y)

∂k

where

〈N〉 =
1

e−Wk

∫
DφN e−S−∆kS+

∫
ddxφJ
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The two-point Green function is

Gk(x , y) =
δ2Wk [J]

δJ(x)δJ(y)

= 〈φ(x)φ(y)〉 − 〈φ(x)〉〈φ(y)〉

with this

k
∂Γ̃k

∂k
=

1

2

∫
ddxddyGk(x , y)k

∂Rk(x , y)

∂k
+

1

2

∫
ddxddy〈φ(x)〉〈φ(y)〉k ∂Rk(x , y)

∂k

=
1

2

∫
ddxGk(x , x)k

∂Rk(−∂2
x )

∂k
+

1

2

∫
ddxφc(x)k

∂Rk(−∂2
x )

∂k
φc(y)

Alejandro Soto Posada () Preliminaries for Asymptotic Safety 25 / 35



k
∂Γ̃k

∂k
=

1

2
Tr

[
Gkk

∂Rk

∂k

]
+

1

2

∫
ddxφc(x)k

∂Rk(−∂2
x )

∂k
φc(x)

hence

k
∂Γk

∂k
=

1

2
Tr

[
Gkk

∂Rk

∂k

]
(26)

But ∫
dzGk(x , z)Γ̃2

k(z , y) = δ(x , y)
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then
Gk =

(
Γ2

k +Rk

)−1

finally we get

k
∂Γk

∂k
=

1

2
Tr

[(
Γ2

k +Rk

)−1
k
∂Rk

∂k

]

Alejandro Soto Posada () Preliminaries for Asymptotic Safety 27 / 35



Scalar Theory

Consider an effective action

Γk =

∫
ddx

(
1

2
(∂φ)2 + Vk [φ2]

)
(27)

then
Γ2

k(x , y) =
(
−∂2

x + 2V ′k [φ2] + 4φ2V ′′k [φ2]
)
δ(x − y)

With a function P(x) = x +R(x) we have

Γ2
k +Rk = P + 2V ′k + 4φ2V ′′k
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with t = log(k/k0) for some fixed k0

ERGE

∂tΓk =
1

2
Tr

(
∂tPk

Pk + 2V ′k + 4φ2V ′′k

)
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In general, for a function W (−∂2) we have

Tr(W (−∂2)) =

∫
ddx

∫
ddp

(2π)d
W (p2)ep(x−y)

∣∣∣∣
x=y

=

∫
ddx

∫
ddp

(2π)d
W (p2)

=

∫
ddx

∫
dΩdpr

(2π)d
pd−1
r W (p2

r )

with ∫
dΩ =

2πd/2

Γ(d/2)
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then we have

Tr(W (−∂2)) = Ad

∫
ddxQd/2(W ) (28)

where

Ad =
1

(4π)d

Qn(W ) =
1

Γ(n)

∫ ∞
o

dzzn−1W (z)
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The ERGE equation now is

∂tVk =
1

2
AdQd/2

(
∂tPk

Pk + 2V ′k + 4φ2V ′′k

)
(29)

we need en explicit form of Vk to solve this equation.
With Z2 symmetry we consider

Vk(φ2) =
∞∑

n=1

λ2nφ
2n (30)

where

λ2n =
1

n!

∂nVk

∂(φ2)n

∣∣∣∣
φ2=0
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As a first calculation, consider a truncation of the serie. Just the first two
terms. The beta function equations are

β2 = −6λ4AdQd/2

(
∂tPk

(Pk + 2λ2)2

)
(31)

β4 = 72λ2
4AdQd/2

(
∂tPk

(Pk + 2λ2)3

)
(32)

In order to look the Wilson-Fisher fixed point, we put d = 3. With
λ̃2 = k−2λ2 and λ̃4 = k−1λ4, we obtain

β̃2 = −2λ̃2 − 6λ̃4k
−1A3Q3/2

(
∂tPk

(Pk + 2λ2)2

)
β̃4 = −λ̃4 + 72λ̃2

4kA3Q3/2

(
∂tPk

(Pk + 2λ2)3

)
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Now, with Rk(z) = (k2 − z)θ(k2 − z) we have

Qn

(
∂tPk

(Pk + a)l

)
=

2

n!

1

(1 + ã)l
k2(n−l+1)

with ã = k−2a.

Then

∂t λ̃2 = −2λ̃2 −
1

π2

2λ̃4

(1 + 2λ̃2)2

∂t λ̃4 = −λ̃4 +
1

π2

24λ̃2
4

(1 + 2λ̃2)3
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k2(n−l+1)
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The non trivial fixed point is given by

Fixed Point

λ̃2 = − 1

26
(33)

λ̃4 =
72π2

(13)3
(34)
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THANKS
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