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ERGE
We want to solve the ERGE equation

1 -1
OiT =5 Tr [ (T} +R) ™" 0:Ra
for gravity. Where t = log(k/ko) for some fixed ko.
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ERGE

We want to solve the ERGE equation

oulk = o Tr [ (T3 + Re) " ORA] o]

for gravity. Where t = log(k/ko) for some fixed kp.
Ik admits an expansion of the form

Mlgu. g "] = Z S g (g) (2)J
n=0
where gi(zn) are the coupling constants and 77,-(2")(gu,,) are all posible

operators constructed from g, and its n-derivates, which are compatible
with the symmetry of the theory.

Alejandro Soto Posada () Asymptotic Safety for Gravity 3/25



With the equations (1) and (2) we have

n=0 |

ST (M3 +Re) ™ 0Ri] = S5 4EIpEN )
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With the equations (1) and (2) we have

ST [T+ R aR] = S5 40P g,0) (3)}

n=0 |

To solve this equation we need an specific form of the cutoff Ry and .
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With the equations (1) and (2) we have

ST [T+ R aR] = S5 40P g,0) (3)J

n=0 |

To solve this equation we need an specific form of the cutoff Ry and .
For the scalar theory with Zy symmetry we have

M2 (x,y) = (=02 + 2V, + 46V{)3(x - y) 4 |

with Vi = Vi (¢?) and primes denote ¢? derivatives.
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With the equations (1) and (2) we have

ST [T+ R aR] = S5 40P g,0) (3)J

n=0 |

To solve this equation we need an specific form of the cutoff Ry and .
For the scalar theory with Zy symmetry we have

M2 (x,y) = (=02 + 2V, + 46V{)3(x - y) 4 |

with Vi = Vi (¢?) and primes denote ¢? derivatives.
Observe that we have an expresion of the form

r®—_s?+E (5)J
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Gravity

In general the inverse of I is an operator of the form

A=-V2+E (6) )

where E = E; + E; is an operator acting on the fields. E; doesn't contain
couplings. E, contain couplings.
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Gravity

In general the inverse of I is an operator of the form

A=-V2+E (6) )

where E = E; + E; is an operator acting on the fields. E; doesn't contain
couplings. E, contain couplings.

We consider that Ex = 0. This is called a cutoff of type Il. Therefore the
inverse propagator is

P(A) = A+ Ri(A) (7)
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The expansion of the effective action for pure gravity is

2
I—E(nSZ) / d*x \/EZ Zgl(zn) MEZn)
n=0

o
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The expansion of the effective action for pure gravity is

2
rn<a) _ / dxygY S 27 M)

n=0

with g@ =277, g@ = —7, g™ = 1/(2)), and g{" = 1/¢.

MO =1 MO =R
MP =2 MY =R

R is the scalar curvature and C? is the square of the Weyl tensor.
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Therefore we get
<2
r{r<2)

for pure gravity.

1
/d4x\/§ [22/\ —ZR+ ﬁC2 +
(rk)grav

1
~R?
§
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Now, consider ns scalar fields, np Dirac fields and np; Maxwell fields
minimally coupled to gravity, the effective action is

1 - 1
e = [ d've [Evmvw + PV + 5 F P

(rk)matt

where V is the covariant derivative.

(9)
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Hence, the effective action is given by

rk(gul/, ¢a ¢7 Au) = (rk)grav + (rk)Matt
Pag. [15]

(10)]
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First, consider that the contribution to the trace is due just to the matter
fields because we are considering processes of high energy where the
number of particles could be large.
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First, consider that the contribution to the trace is due just to the matter
fields because we are considering processes of high energy where the
number of particles could be large.

We need to calculate

(M + R = (M) are + Ri) ™ |
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First, consider that the contribution to the trace is due just to the matter
fields because we are considering processes of high energy where the
number of particles could be large.

We need to calculate

(M + R)™ = (M) et + Ri) ™ |

where

() o . 62(T k) Mate N 62(T k) Mate
Tl = 5@@@@@0*’”@&@@@0
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We obtain the ERGE:

ERGE
_ong DR (ALY np Dt Ri(ADP)
e 3%( Pua®) )~ 2 O\ "py(a®)
Ny atRk(A(M)) ny 8tRk(A(gh))
2o ()~ 27 iy

with a type Il cutoff P, (AM)) = A + R (AM) we obtain for each case
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scalar

A = _v2

(12)
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scalar

AB) = 2 (12)
Dirac
R
AP = _v2 ¢ 7 (13)
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scalar

AB) = 2 (12)
Dirac

AP) = _v2 4 g (13)
Maxwell

AM = V2 4 Ricci
where Ricci(v), = Rjv,.
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scalar

A = _v2
Dirac

(12)

AP = 2, R

4

Maxwell

(13)

AM) = _v2 1 Ricci
where Ricci(v), = Rjv,.
Ghost

Algh) — 2

o F
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Hence

Trace

1 1 O:R,
8trk = = /d4X\/§ |:(ns —4np + 2nM)02 ( ’tD k)
k

2 (4m)?2
1 O:R
+6R(ns —2np — 4np) @1 < It,kk)

1
T ((3ns + 18np + 36ny) C* — (ns + 11np + 62np) E

+5nsR% + 12(ns + np — 3nM)V2R) oo ] (16)

C? is the square of the Weyl's tensor and
E = Ry RMP — 4R, R + R? Pag. [15]
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Hence

Trace

1 1
M — -
Ol 2 (4m)?2

/d4X\/§ [(ns —4np + 2np) Q2 (8;fk)

1 O:rR,
—|——R(n5 —2np — 4nM)Ql £k
6 Py

1
e ((3ns + 18np + 36ny) C* — (ns + 11np + 62np) E

+5nsR% + 12(ns + np — 3nM)V2R) oo ] (16)

C? is the square of the Weyl's tensor and
E = Ry RMP — 4R, R + R? Pag. [15]

Remark J

The coefficients of the 4-derivative terms are scheme independent.
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The function Q is defined as

Qn(W) = ﬁ /000 dzz" W (z)

o & = E A
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Fixed Point

In order to look for a fixed point we have to obtain the equations for the
beta functions. This is done with (10) and (16). First we note that

0T )graw = / o [at(zz/\) + O(=2)R + 0, ( u) c?

0 (2) <]
/ d*xvE |0:(g) + 0:(g®)R + 0:(g") C?
+0u(gy’ ))Rﬂ
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Then

Equations

1 OtR
0,g® = 2y (ns —4np + 2np) Qo ( ;,kk) (17)
1 OtR
() _ _ . t Nk
o8 12(47r)2(n5 2np — 4ny) Q1 ( P, ) (18)

with the optimized cutoff

R(z) = (k* — 2)0(k® — 2)
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The integrals Q are

1
P+ q)’

2(n—I1+1
H(1+a)’k( o

o (255)-

with § = k—2q.

(19)J
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The integrals Q are

Ot Ry 2 1 2(n—I+1)
@ (ray) = marar* &
with § = k—2q. Hence
O:R
Qz( ;kk) = K (20)
o (a;*:k) — 22 (21)
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Then

9,8 = a0k (22)
0,8 = a0k (23)
with
S0 _ ns —4np + 2npy
2(47)?
S _ ns —2np — 4npy
6(47)?
In general 9,g("M = a(" k4—n,
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With g(n) = kn=4g()
9.8 = (n—4)g" + k"49,g(" = (n — 4)g(" + 2"

and

we have

080 = 8,(2k*ZN) = 8, <L>

8rG
D AL s
- 87r@~_ 8rG2
= ——5 +aO
21 G
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With this we get

(8:A)G — (8:G)A = —4GA + 87 G220

in the same way we obtain with g(®)

0:G = 2G + 167 G2a®

with these equations finally

N = —2A+167GA + 87Gal® (24)
G = 2G+16nG2a® (25)
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From (24) if

9:G =0=2G(1+8rGa?)

hence
= 1 1 6(47)>
7 8ra® 8w (ns — 2np — 4npy)
- 127
G, = 26
ns —2np — 4npy ( )‘
and
~ 3 ns —4np + 2npy
. = —= 2
4 ns —2np — 4npy ( 7)1
21 /25
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There is a non trivial Fixed Point.

The flow is given by
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For pure gravity, we consider the Einstein-Hilbert truncation

rr=2) _ / d*x\/E[2ZA — ZR] + Ser + S

(28)J
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For pure gravity, we consider the Einstein-Hilbert truncation

r£n§2) _ /d4X\/E [22/\ — ZR] + Sgr + Sgh (28)J

the equations for the beta functions are

. —2(1—2A)2A + 36—41/"\+427{\2—600/~\3 G + 467572 =2

N = G 288n° (29)
(L= 2hjp — =0
. 2(1 — oA C — 373—654A+600A2 G2
0:G = ( ) 27 (30)

A 29-—9A

v
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The flow is given by
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