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Recap

We recall that the standard formulation of quantum theory has severe

deficiencies that impede its application in a general relativistic context,
notably:

@ Dependence on a predetermined notion of time
@ Non-locality in space
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How to proceed?

How do we obtain a better foundation of quantum theory?

Learn from nature! For a theorist this means: Take the best description
of nature at a fundamental level that we have available. This is

quantum field theory. Analyze its operational core and look for clues
of an underlying structure.
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How to proceed?

How do we obtain a better foundation of quantum theory?

Learn from nature! For a theorist this means: Take the best description
of nature at a fundamental level that we have available. This is

quantum field theory. Analyze its operational core and look for clues
of an underlying structure.

This leads us here to a formulation of the foundations such that
@ there is no reference to time
@ locality is manifest
@ the standard formulation is recovered (when applicable)
This is called the general boundary formulation and it is based on

@ The mathematical framework of topological quantum field
theory. (A branch of modern algebraic topology.)

@ A generalization of the Born rule.
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Lessons from quantum field theory

Various important structural features of quantum field theory as it is

practically used are awkward from the point of view of the standard
formulation. We focus on a few:

© The Feynman path integral. This turns out to be much more
suitable to describe the dynamics of quantum field theory than
Hamiltonian or time-evolution operators.

@ Crossing symmetry. This property of the S-matrix is completely
unmotivated from the point of view of the standard formulation.

© The time-ordered product of fields. This rather than the operator
product is the relevant structure to extract physical predictions.

Taking the listed structures seriously from a foundational point of
view gives valuable clues towards a reformulation.
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Transition amplitudes

1-

From the path integral to TQFT

The dynamics of quantum field theory is efficiently described using
the Feynman path integral [Feynman 1948]. In particular, the transition

amplitudes describing time-evolution can be recovered from the path
integral.

t A <¢2/ u[t1,t2]¢1> =
t —
f Dp1Dpr Y1(P1)V2(92) Zity 1,1(P1, P2)
Krl ><I<t2
t
: Z[tlftz]((Plz Q2) == f D¢ AS@)
Kity 191t =i

Kit, 1,1 — space of field configurations in the spacetime region [t1, t,] X R3.
K}, — instantaneous space of field configurations at ¢;.
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Composition in time
1 - From the path integral to TQFT

Consider the composition of time-evolutions
@ in operator form: Uy, ;] = Uy, 1) © U, ]
@ in terms of matrix elements:

(W3, Ut 11901) = Lien(W3, Ut 151E0Ei Uty 119010

In the path integral picture this arises from

t ok a temporal composition property of the
t3 path integral.
t
Zity 151(P1, P3) =
ty
v D02 Zinea@1 92) 21t (P2 #3)
t
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Composition in spacetime I
1 - From the path integral to TQFT

The path integral satisfies a much more general composition property
in spacetime. This comes from:

@ The locality of the integral over field configurations in spacetime

@ The additivity of the action in spacetime: Say M; and M, are
non-overlapping spacetime regions, then,

5 MUM, = SM1 + SM2 and so oMMy = plSMy piSM,

Robert Oeckl (CCM-UNAM) basics of the GBF

CCM 20130228 8/27



Composition in spacetime II
1 - From the path integral to TQFT

2 @2
®1 @ @1 o
Y 2
) 2 ) 2

Zmum, (@1, 92) = ; Doy Zy, (91, 0) 2, (@5, 2)
Y

Lesson

This suggests that quantum (field) theory itself should incorporate
such a generalized composition property.
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Topological quantum field theory
1 - From the path integral to TQFT

This property of the path integral motivated the notion of topological
quantum field theory [E. Witten, G. Segal, M. Atiyah etc. ca. 1988].

A To geometric structures (pieces
of spacetime)

Hy @ hypersurfaces X: oriented
1 . manifolds of dim. d — 1
@ regions M: oriented

Hom
manifolds of dim. d with
PMm boundary
associate algebraic structures
e to X a Hilbert space Hyx

@ to M an amplitude map
pm : Hoy — C
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Core axioms
1 - From the path integral to TQFT
o Let & denote = with opposite orientation. Then Hy = H;.
@ (Decomposition rule) Let © = X; U X be a disjoint union of
hypersurfaces. Then Hy = Hy, ® Hy,.
@ (Gluing rule) If M; and M, are adjacent regions, then:

Un ) yn g & )
y L
7 2 . 2

pavum, (W1 ® ¥2) = pa, © pa, (P1 ® P2) = Z o, (W1 ® E)pm, (& ® 2)
ieN
Here, Y1 € Hy,, Y2 € Hy, and {&;}ien is an ON-basis of Hy.
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Recovering transition amplitudes
1 - From the path integral to TQFT

A T,
ta { @ region: M = [tq,f] X R3
-y, s
M @ boundary: M = X; UL,
t1 @ state space:
S Hoy = Hy, o, = H, 0 Hy,

Via time-translation symmetry identify Hy, = Hy, = H. Then,

P11, 11 (W1 ®P3) = (Yo, Uy, 1,1¢1)-
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Recovering transition amplitudes
1 - From the path integral to TQFT

A x
¥ 2 .
ta \-—Zz @ region: M = [tq,f] X IRi
M @ boundary: M = X; UL,
@ state space:

ty
S I oy = My, 0Hg, = Hy, @ Hy,

y

X

Via time-translation symmetry identify Hy, = Hy, = H. Then,

P11, 11 (W1 ®P3) = (Yo, Uy, 1,1¢1)-

@ But, does it make sense do go beyond this example?

@ Does the boundary Hilbert space H,, have a useful physical
interpretation in general?
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Crossing symmetry
2 — Crossing symmetry and the joint state space

Quantum field theory satisfies crossing symmetry. That is, transition
amplitudes remain (essentially) invariant when individual particles
are moved between the in- and the out-state spaces.

3 “ x.\'_ I ¢ &
RN e
t=tb - ' ’ SIS S S

> A
KPPl P> = Lpafrltnpr <AD>

tt‘i'{“’g/*(//' /"/__K-/ ////
1 3 2 7

Thus, particles might reasonably thought of as living in a joint product
Hilbert space Hin ® Hout, distinguished merely by quantum numbers.
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Boundary state spaces

2 — Crossing symmetry and the joint state space

The analogous picture for a connected boundary looks like this:

3 %5
/.
;xf{/z
1

Lesson

Crossing symmetry is indispensable for state spaces associated to more
general boundaries to make sense.
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Probabilities

Generalizing the Born rule

Consider a spacetime region M. The associated amplitude py; allows
to extract probabilities for measurements in M.

Probabilities in quantum theory are generally conditional probabilities.
They depend on two pieces of information. Here these are:

e S C Hj), representing preparation or knowledge

e A C Hj) representing observation or the question

The probability that the physics in M is described by A given that it is
described by S is: (here A C S) [RO 2005]

Yier lpm(ENP

PAS) = 5 o

Here {&;}ic; is an ON-basis of S and reduces on | C I to an ON-basis of the
subspace A.
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Recovering standard probabilities

Generalizing the Born rule

; A /EZ

2 \3_22
M

tq 1\'21
x »

To compute the probability of measuring ¢, at t, given that we
prepared 11 at t; we set

S=p1@H, A=HY;.
The resulting expression yields correctly

ot 1($1 @ P3P
1

P(AIS) = = (P2, U, 1 1)
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Observables are labeled

3 — The time-ordered product and composition of observables

@ Standard observables of QFT are values of fields i)(x) and their
derivatives dy(x) at spacetime points x.

@ These observables carry a label x specifying when (and where)
they are applied.

e For consistency under changes of reference frame we need
[A(x),B(y)] =0 if x and y are spacelike separated,

that is, if there is a reference frame where x and y are
instantaneous.
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The time-ordered product

3 — The time-ordered product and composition of observables

@ There is only one operationally meaningful composition of two
observables, given by the commutative time-ordered product:

_ JA®BY) ifx > yo
T A(x)B(y) := {B(y)A(x) if xo <o

o In QFT all physically measurable quantities are constructed via
the time-ordered product. The noncommutative operator product
is never directly used.

@ The operator product can be recovered from the time-ordered
product. For equal times:

[A(t, %), B(t,y)] = lin% TA(t + €, X)B(t — €,7) — TB(t + €, ) A(t — €, %)
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The path integral and observables

3 — The time-ordered product and composition of observables

Observables in QFT are quantized through the path integral:

(Y2, Ay = f Dp1DP Yr(@)Pa(@2) Zfy (@1, 92)

Ktl XKtz
Zhtovei= [ Dpa@es
Kity 1Pl =i
t A
ta For example, for the classical observable
°p A = ¢(p), the quantization A = ¢(p) is the

ty usual field operator.

X >
Lesson
Observables are naturally spacetime objects. J
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Composition of observables

3 — The time-ordered product and composition of observables

The observables of QFT inherit the composition property of the path
integral. This is the origin of the time-ordered product.

fra
3 For example, if A = $(p)P(q), then
/ *q A = Td(p)P(q). This can also be obtained
oy by spacetime composition of b(p) with
h ¢ (@)-
>
Lesson

Quantum observables are spacetime composable in the same way as

amplitudes. Moreover, there is a correspondence between the classical
product and quantum composition.
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Observables in the GBF

Observables are associated to regions M and encoded through
observable maps p{) : H;; — C, similar to the amplitude maps.

153

Observables can be composed in the same way as amplitudes via
gluing of the underlying regions. The same formula as for amplitudes
applies. We denote their composition as

O O
lel ¢ pMZZ : Wa(MlUMZ) —-C
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Recovering standard observables

/f e region: M = [t,t] x R®
t M C O > =X e boundary: M =X UL
;\Z @ state space:
| X Hopg = Hy @ He = Hy @ H:.

Recall Hy = H. In this geometry of an infinitesimally thin slice there is
a correspondence between observable maps pﬁ E Hy. ® H;. — C and

standard observables O : H — H via matrix elements:

PO a1 ® Y3) = (2, OYr) Vi, gy € H.
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Observables and expectation values

Consider a spacetime region M carrying an observable O. The
associated observable map plc\)/I allows to extract expectation values for
measurements in M.

The expectation value of the observable O conditional on the system
being prepared in the subspace S C H;,, can be represented as
follows: [RO 2010]

Yier Pm(&) pS)(Er)

O =
Os = =5 IomEP

Here {&;}ier is an ON-basis of S.
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Recovering standard expectation values

oy
t M C 0 S ~=r
=~

| x
To compute the expectation value of observable O at time f given by

g1 ® ¥3) = (a2, Oy1)

in the state 1) we set

S=¢yeH".
The standard expectation value is then correctly recovered as
Prn @y A
(O)s = =A== = (¥, 09).
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Composition correspondence

Suppose we are given classical observables O; and O; localized in
adjacent spacetime regions M; and M, respectively. In the classical
theory there is a natural composition of these observables given by the
ordinary product O; - O; in the joint spacetime region M; U M.

We then say that a quantization prescription O; +— p](\)/lll, O; - p](\)/lz2
satisfies the composition correspondence property if,

010, _ O O
Pyyum, = Py © P,

As already mentioned, quantum field theory satisfies this!
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A remark on fermions

The formalism in the form presented so far only applies to bosonic
theories. In the presence of fermionic degrees of freedom certain
modifications apply [RO 2012]:
o All structures are equipped with a Z,-grading that distinguishes
even and odd fermion number.
o Hilbert spaces are replaced by Krein spaces. These are indefinite
inner product spaces decomposing into a positive definite and
negative definite part.

Hy = H & Hy

The reason that these Krein spaces are “invisible” in ordinary QFT
has to do with the restriction to spacelike hypersurfaces and to a
global choice of time orientation.
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V.
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