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Quantum Field Theory

I QFT (in Minkowski space) has been constructed according to the
principles of quantum mechanics and special relativity.

I QFT is the mathematical framework to describe fundamental
interactions (except gravity): According to contemporary physics,
the universe is made up of matter fields (fermions) and interaction
fields (bosons).

I Very successful theories have been formulated in this framework:
QED (the theoretical and experimental values of the magnetic
moment of the electron agree to within one part in 1010), the
Standard Model, etc.



GBF

I The GBF is an axiomatic formulation of quantum theory which
combines the mathematical framework of Topological Quantum
Field Theory (see Homero’s seminar) with a generalization of the
Born’s rule to extract probabilities.

I The spacetime background metric does not play any fundamental
role in the GBF.

I However, a general boundary quantum theory can be implemented
for studying the dynamics of fields defined on a spacetime with a
definite metric background.



General Boundary QFT

The general boundary formulation of QFT appears to be interesting for
several reasons,
1. the ability to reproduce known results obtained in QFT represents a

fundamental test for the GBF;
2. the versatility of the GBF, where general spacetime regions are

considered, offers a new perspective on QFT and a better
understanding of its geometrical aspects (clarification of the
holographic principle, boundaries, horizons);

3. it can treat situations where standard QFT fails:
I QFT in presence of a static black hole: rigorous treatment

implementable with the hypercylinder geometry,
I S-matrix in Anti-de Sitter spacetime;

4. it may solve some of the interpretation problems of background
independent QFT (problem of time, local description of dynamics).



How to get a QFT?
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How to proceed?

1. The starting point is a classical field teory, namely:
I Spacetime regions with a fixed metric
I One or more fields satisfying some e.o.m.

2. The GBF provides two quantization prescriptions:
I The Schrödinger-Feynman quantization
I The holomorphic quantization

3. The resulting quantum field theory satisfies the axioms of the GBF.
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Basic structures

In the GBF algebraic structures are associated to geometric ones.

Geometric structures (representing pieces of spacetime):
I hypersurfaces: oriented manifolds of dimension d − 1
I regions: oriented manifolds of dimension d with boundary

Algebraic structures:
I To each hypersurface Σ associate a Hilbert space HΣ of states.
I To each region M with boundary ∂M associate a linear amplitude

map ρM : H∂M → C
I As in AQFT, observables are associated to spacetime regions: An

observable O in a region M is a linear map ρO
M : H∂M → C, called

observable map.



Axioms and recovering of standard results

These algebraic structures are subject to a number of axioms, in the
spirit of TQFT.

I If Σ denote Σ with opposite orientation, then HΣ = H∗Σ.
I (Decomposition rule) If Σ = Σ1 ∪ Σ2, then HΣ = HΣ1 ⊗HΣ2 .
I (Gluing rule) If M and N are adjacent regions, then
ρM∪N = ρM ◦ ρN . The composition ◦ involves a sum over a
complete basis on the boundary hypersurface Σ shared by M and N.

I Standard transition amplitudes of QFT can be recover from the
GBF: ρ[t1,t2](ψt1 ⊗ ηt2) = 〈η|U(t1, t2)|ψ〉.

I A consistent probability interpretation can be implemented, standard
probabilities recovered.

I Conventional expectation values of observables can be recovered.
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Classical field theory

We consider a linear real scalar field theory in a spacetime region M of
an N-dimensional Lorentzian manifold (M, g).

I Action: S [φ] =
∫

M dNxL(φ, ∂φ, x).
I With an hypersurface Σ we associate LΣ, the space of solutions of

the e.o.m. defined in a neighborhood of Σ. LΣ is a vector space.
I The symplectic potential is the one-form on LΣ,

(θΣ)φ(X ) :=

∫
Σ

dN−1σX (x(σ))

(
nµ

δL
δ∂µφ

)
(x(σ)),

where nµ is the unit normal vector to Σ.
I For every two elements of LΣ there is the bilinear map

[·, ·]Σ : LΣ × LΣ → R defined such that [ξ, η]Σ := (θΣ)ξ(η)

I LΣ is equipped with the symplectic structure ωΣ : LΣ × LΣ → R
given by ωΣ(ξ, η) := 1

2 [ξ, η]Σ − 1
2 [η, ξ]Σ.



Complex structure

The passage from the classical to quantum theory needs the specification
of a compatible complex structure JΣ represented by the linear map
JΣ : LΣ → LΣ such that

J2
Σ = −id, ωΣ(JΣ·, JΣ·) = ωΣ(·, ·)

and ωΣ(·, JΣ·) is a positive definite bi-linear map.



Schrödinger-Feynman quantization

I Quantum states are represented by wave functionals of field
configurations.

I We define the «space of momentum», MΣ ⊂ LΣ, as

MΣ := {η ∈ LΣ : [ξ, η] = 0∀ξ ∈ LΣ}.

I We consider the quotient space QΣ := LΣ/MΣ which corresponds
the space of all field configurations on Σ.

I Next, we define the bilinear map

ΩΣ :QΣ × QΣ → C,
(ϕ,ϕ ′) 7→ 2ωΣ(jΣ(ϕ), JΣjΣ(ϕ ′)) − i [jΣ(ϕ), ϕ ′]Σ,

where jΣ is the unique linear map QΣ → LΣ such that
qΣ ◦ jΣ = idQΣ

and qΣ is the quotient map LΣ → QΣ.



Schrödinger-Feynman quantization II

I The Hilbert space HΣ is defined as the closure of the set of all
coherent states

Kξ(ϕ) = exp
(
ΩΣ(qΣ(ξ), ϕ) + i[ξ,ϕ]Σ −

1
2
ΩΣ(qΣ(ξ), qΣ(ξ)) −

i
2

[ξ, ξ]Σ −
1
2
ΩΣ(ϕ,ϕ))

)
,

with respect to the inner product

〈Kξ,Kξ ′〉 :=

∫
QΣ

DϕKξ(ϕ) Kξ ′(ϕ),

where the bar denotes complex conjugation.
I The vacuum state K0 is defined as the coherent state with ξ = 0,

K0(ϕ) = exp
(

−
1
2
ΩΣ(ϕ,ϕ)

)
.



Schrödinger-Feynman quantization III

I Dynamics is encoded in an amplitude map for a region M,
ρM : HΣ → C, for a state ψ ∈ HΣ, (where now Σ denotes the
boundary of M)

ρM(ψ) =

∫
QΣ

Dϕψ(ϕ)

∫
KM ,φ|Σ=ϕ

Dφ eiSM(φ).

The inner integral is over the space KM of space-time field
configurations φ in the interior of M which agree with ϕ on the
boundary Σ.

I A classical observable F in M is modeled as a function on KM . The
quantization of F is the linear map ρF

M : HΣ → C defined as

ρF
M(ψ) =

∫
QΣ

Dϕψ(ϕ)

∫
KM ,φ|Σ=ϕ

DφF (φ)eiSM(φ).



Holomorphic quantization

I Linear field theory: LΣ is the vector space of solutions near the
hypersurface Σ.

I The complex structure JΣ and the symplectic structure ωΣ are
combined to a real inner product

gΣ(·, ·) = 2ωΣ(·, JΣ·),

and assume that this form is positive definite.
I Next, we define the sesquilinear form

{·, ·}Σ = gΣ(·, ·) + 2iωΣ(·, ·).

I The completion of LΣ with the inner product {·, ·}Σ turns it into a
complex Hilbert space.



Holomorphic quantization II

I The Hilbert space HΣ is the set of square integrable holomorphic
functions on LΣ, and is given by the closure of the set of all coherent
states

Kξ(φ) := e
1
2 {ξ,φ}Σ ,

where ξ ∈ LΣ and the closure is taken with respect to the inner
product

〈Kξ,Kξ ′〉 :=

∫
LΣ

dνΣ(φ) Kξ(φ)Kξ ′(φ),

where dνΣ can be represented formally as
dνΣ(φ) = dµΣ(φ)e

1
4 gΣ(φ,φ) with a certain translation invariant

measure dµΣ.



Holomorphic quantization III

I The amplitude map ρM : HΣ → C associated with the spacetime
region M for a state ψ ∈ HΣ is given by

ρM(ψ) =

∫
LM̃

ψ(φ) exp
(

−
1
4
gΣ(φ,φ)

)
dµM̃(φ).

where LM̃ ⊆ LΣ is the set of all global solutions on M mapped to LΣ
by just considering the solutions in a neighborhood of Σ.

I The observable map associated to a classical observable F in a
region M is

ρF
M(ψ) =

∫
LM̃

ψ(φ)F (φ) exp
(

−
1
4
gΣ(φ,φ)

)
dµM̃(φ).



Results

Result 1
An isomorphic can be constructed between the Hilbert spaces in the two
representations.

Result 2
The GBF axioms are satisfied by these quantization prescriptions.
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Klein-Gordon theory in Minkowski: standard setting

The S-matrix technique is used to describe interacting QFT:

Spacetime region:
M = [t1, t2]× R3

Boundary: ∂M = Σ1 ∪ Σ2
State space: H∂M = HΣ1 ⊗H∗Σ2

Assume interaction is relevant only
between the initial time t1 and the
final time t2. The S-matrix is the
asymptotic limit of the amplitude be-
tween free states at early and at late
time:

〈ψ2|S |ψ1〉 = lim
t1→−∞
t2→+∞〈ψ2|Uint(t1, t2)|ψ1〉 = lim

t1→−∞
t2→+∞ ρ

U
[t1,t2]×R3(ψ2 ⊗ψ1)



Spatially asymptotic S-matrix

Similarly, we can describe interacting
QFT via a spatially asymptotic ampli-
tude. Assume interaction is relevant
only within a radius R from the origin
in space (but at all times). Consid-
er then the asymptotic limit of the
amplitude of a free state on the hy-
percylinder when the radius goes to
infinity:

S(ψ) = lim
R→∞ ρR(ψ)

Result
The S-matrices are equivalent when both are valid.



Some results obtained from GBQFT

I Description of quantum states on timelike hypersurfaces. This
permits the quantization of evanescent waves that are ”invisible” in
traditional quantization prescriptions.

I Description of general interacting QFT in Minkowski spacetime.
I Description of new types of asymptotic amplitudes, generalizing the

S-matrix framework.
I New representation of the Feynman propagator.
I These results have been extended to Euclidean, de Sitter, Anti-de

Sitter and Rindler spaces.
I General structure of the complex structure (and vacuum state) used

in the Schrödinger representation of QFT and pairing between the
holomorphic and the Schrödinger representation(in col. with Max).

I Unitary evolution in curved spacetime (in col. with Robert).
I General structure of the S-matrix and the Feynman propagator in a

wide class of curved spaces(in col. with Max).
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