Algebraic Quantum Field Theory and Category Theory I

Albert Much

UNAM Morelia, CCM,

Seminario de física matemática del CCM

05.04.2017

Outline

Intro to Algebraic Quantum Field Theory

A Few Definitions General Introduction Tomita-Takesaki modular theory

AQFT in terms of Category Theory Definitions Categories

Outline

Intro to Algebraic Quantum Field Theory A Few Definitions

General Introduction Tomita-Takesaki modular theory

AQFT in terms of Category Theory Definitions Categories

Defining a *-algebra

Definition

 \mathcal{A} is called an **algebra** over \mathbb{C} , if $\alpha A + \beta B$ with $A, B \in \mathcal{A}$ and $\alpha, \beta \in \mathbb{C}$, are well defined. In addition, there is a product $\mathcal{A} \times \mathcal{A} \to \mathcal{A}$, which is distributive over addition,

A(B+C) = AB + AC, (A+B)C = AC + BC, $\forall A, B, C \in A$.

The algebra \mathcal{A} is called a **unital algebra** if it has a unit \mathbb{I} .

Definition

An algebra \mathcal{A} is called a ***-algebra** if it admits an involution $* : \mathcal{A} \to \mathcal{A}$:

$$A^{**} = A,$$
 $(AB)^* = B^*A^*,$ $(\alpha A + \beta B)^* = \overline{\alpha}A^* + \overline{\beta}B^*$

for any $A, B \in \mathcal{A}$ and $\alpha, \beta \in \mathbb{C}$.

Defining a normed-algebra

Definition

An algebra \mathcal{A} with a norm $\|\cdot\| : \mathcal{A} \to \mathbb{R}$ is called a **normed algebra** if:

$$\|A\| \ge 0, \|A\| = 0 \Leftrightarrow A = 0, \qquad \|\alpha A\| = |\alpha| \|A\|,$$

 $||A + B|| \le ||A|| + ||B||,$ $||AB|| \le ||A|| ||B||$

for any $A, B \in \mathcal{A}$ and $\alpha, \in \mathbb{C}$.

Norm topology: The neighborhoods of any $A \in \mathcal{A}$ are given by

$$U(A)_{\epsilon} = \{B \in \mathcal{A} : ||A - B|| < \epsilon\}, \quad \epsilon > 0.$$

Bounded Operators

 $\begin{array}{l} \text{Definition} \\ \mathcal{B}(\mathscr{H}) := \text{set of all bounded, linear operators acting in a Hilbert space} \\ \mathscr{H}. \ \text{The norm is given by} \end{array}$

$$\|A\| = \sup_{\psi \in \mathscr{H}} \frac{\|A\psi\|}{\|\psi\|} < \infty$$

A *-sub-algebra of $\mathcal{B}(\mathcal{H})$ is a subset $S \subset \mathcal{B}(\mathcal{H})$ such that it is also *-algebra (i.e. $A \in S$, $A^* \in S$).

Definition

A *-sub algebra of $\mathcal{B}(\mathcal{H})$ is called a C^* -**algebra** if it is a normed *-algebra which is uniformly closed and whose norm satisfies additionally

$$\|A^*A\| = \|A\|^2, \qquad A \in \mathcal{A}.$$

Von Neumann Algebras

Definition

A weakly closed *-sub-algebra of $\mathcal{B}(\mathscr{H})$ containing the unit operator is called a **von Neumann algebra**.

Definition

The **commutant** of an arbitrary subset $S \subset \mathcal{B}(\mathcal{H})$, denoted by S', is the set of all bounded operators that commute with all elements of S.

Theorem

Let $S \subset \mathcal{B}(\mathscr{H})$ be a self-adjoint set. Then (a) S' is a von Neumann algebra. (b) $S'' \equiv (S')'$ is the smallest von Neumann algebra containing S(c) S''' = S'

Outline

Intro to Algebraic Quantum Field Theory

A Few Definitions

General Introduction

Tomita-Takesaki modular theory

AQFT in terms of Category Theory Definitions Categories

- (a) Incorporate principles of quantum mechanics and special relativity
- (b) Mathematical rigorous QFT relying on fundamental principles
- (c) Construct (or solve) **four-dimensional** interacting QFT!

Technical problems that formulation of spaces of states:

(a) In QFT the Stone-von Neumann theorem fails \Rightarrow representation of Weyl-group on the state space non-unique \Rightarrow Requiring choice of representation.

(b) Renormalization theory formulation in terms of states \Rightarrow infrared problems \Rightarrow Absent in Formulation in terms of observables (DuetschFredenhagen).

The general assumptions

- (a) Separable Hilbert space \mathcal{H} of state vectors.
- (b) Unitary representation $U(a, \Lambda)$ of the Poincaré group $\mathcal{P}^{\uparrow}_{+}$ on \mathcal{H}
- (c) Invariant, normalized state vector $\Omega \in \mathcal{H}$ (vacuum)
- (d) A family of *-algebras $\mathcal{A}(\mathcal{O})$ of operators on \mathcal{H} (a "field net"), indexed by regions $\mathcal{O} \subset \mathbb{R}^4$
- (e) Isotony: $\mathcal{A}(\mathcal{O}_1) \subset \mathcal{A}(\mathcal{O}_2)$ if $\mathcal{O}_1 \subset \mathcal{O}_2$

Assumption: Operators are bounded and algebras are closed in the weak operator topology, i.e. \Rightarrow von Neumann algebras.

Axioms (Haag-Kastler Axioms)

- (i) Local (anti-)commutativity: A(O₁) (anti-)commutes with A(O₂) if O₁ and O₂ space-like separated.
- (ii) **Covariance**: $U(a, \Lambda)\mathcal{A}(\mathcal{O})U(a, \Lambda)^{-1} = \mathcal{A}(\Lambda \mathcal{O} + a)$.
- (iii) **Spectrum condition**: The energy momentum spectrum, i.e. of the generators of the translations U(a) lies in V^+ .
- (iv) **Cyclicity of the vacuum**: $\cup_{\mathcal{O}} \mathcal{A}(\mathcal{O})\Omega$ is dense in \mathscr{H} .

Example: Free Field

$$(\Box + m^2)\phi = 0,$$

Algebra of observables generated by

$$\mathcal{A}(\mathcal{O}) := \{e^{i\phi(f)}, supp f \subset \mathcal{O}\}^{''}$$

Theorems

(i) Reeh-Schlieder Theorem

- (ii) Spin-Statistics Theorem generalized to curved space-times using AQFT (Verch01)
- (iii) Bisognano-Wichmann Theorem

Reeh-Schlieder Theorem

Additional assumption on $\mathcal{A}(\mathcal{O})$, weak additivity: For every fixed open set \mathcal{O}_0 the algebra generated by the union of all translates, $\mathcal{A}(\mathcal{O}_0 + x)$, is dense in the union of all $\mathcal{A}(\mathcal{O})$ in the w. o. t.

Theorem

Under the assumption of weak additivity, $\mathcal{A}(\mathcal{O})$ is dense in the Hilbert space \mathscr{H} for all open sets $\mathcal{O} \Rightarrow \Omega$ is cyclic and separating for every local algebra $\mathcal{A}(\mathcal{O})$. (separating $A\Omega = 0 \Rightarrow A = 0$)

Proof.

Pick $\mathcal{O}_0 \subset \mathcal{O}$ such that $\mathcal{O}_0 + x \subset \mathcal{O}$ for all x with $|x| < \epsilon$, for some $\epsilon > 0$. If $\Psi \perp \mathcal{A}(\mathcal{O})\Omega$ then $\langle \Psi, U(x_1)A_1U(x_2 - x_1)\cdots U(x_n - x_{n-1})A_n\Omega \rangle = 0$ for all $A_i \in \mathcal{O}_0$ and $|x_i| < \epsilon$. Analyticity of $U(a) \Rightarrow \forall x_i$. Theorem follows by weak additivity.

Outline

Intro to Algebraic Quantum Field Theory

A Few Definitions General Introduction Tomita-Takesaki modular theory

AQFT in terms of Category Theory Definitions Categories

Tomita-Takesaki modular theory

Ingredients : a von Neumann algebra ${\cal A}$ together with a cyclic and separating vector $\Omega.$ To every such pair

(i) Define an anti-linear operator $\mathcal{S}:\mathcal{A}\Omega
ightarrow\mathcal{A}\Omega$ by

 $SA\Omega = A^*\Omega.$

 ${\it S}$ is well defined on a dense set in ${\mathscr H}$ since Ω is separating and cyclic.

(ii) It has a polar decomposition $S = J\Delta^{1/2} = \Delta^{-1/2}J$ with the modular operator $\Delta = S^*S > 0$ and the anti-unitary modular conjugation J with $J^2 = 1$.

Theorem: Modular group and KMS-condition

$$\Delta^{it} \mathcal{A} \Delta^{-it} = \mathcal{A}, \qquad \forall t \in \mathbb{R}, \qquad \qquad J \mathcal{A} J = \mathcal{A}'$$

Moreover, for $A, B \in \mathcal{A}$

$$\langle \Omega, AB\Omega \rangle = \langle \Omega, B\Delta^{-1}A\Omega \rangle$$

 \Rightarrow Equivalent to the Kubo-Martin Schwinger (KMS) condition that characterizes thermal equilibrium states w.r.t. "time" evolution

$$A \to \alpha_t(A) := \Delta^{it} A \Delta^{-it} = A$$

on \mathcal{A} .

Wedge

A space-like wedge W is, by definition, a Poincaré transform of the standard wedge $W_R = \{x \in \mathbb{R} : |x_0| < x_1\}$, i.e.

To W is associated a one-parameter family $\Lambda_W(s)$ of Lorentz boosts that leave W invariant and a reflection j_W , that maps W into the opposite wedge : product of space-time inversion θ and a rotation $R(\pi)$ around the 1-axis.

Bisognano-Wichmann Theorem

Consider algebras $\mathcal{A}(W)$ with vacuum Ω as cyclic and separating vector. The modular objects Δ and J associated with $(\mathcal{A}(W), \Omega)$ depend on W but it is sufficient to consider W_R .

BW75 discovered Δ and J are related to the representation U of the Lorentz group and the PCT operator θ as:

Theorem Bisognano-Wichmann

$$J = \theta U(R(\pi)), \qquad \Delta^{it} = U(\Lambda_{W_R}(2\pi t))$$

 \implies Modular localization associates a localization structure with any (anti-)unitary representation of P^{\uparrow}_{+} satisfying the spectrum condition:

Weyl quantization generates naturally a local net satisfying all the axioms of a AQFT!

Example: Free Bosonic Field

Let U be an (anti-)unitary representation of P^{\uparrow}_+ satisfying the spectrum condition on \mathscr{H}_1 . For a wedge W, let Δ_W be

$$\Delta^{it}_W = U(\Lambda_W(2\pi t))$$

and let J_W be the anti-unitary involution representing j_W , define:

$$S_W := J_W \Delta_W^{1/2}.$$

The space

$$\mathcal{K}(\mathcal{W}) := \{\phi \in \operatorname{\mathsf{domain}} \Delta^{1/2}_{\mathcal{W}} : S_{\mathcal{W}}\phi = \phi\} \subset \mathscr{H}_1$$

satisfies:

(i) K(W) is a closed real subspace of \mathscr{H}_1 in the real sp

(ii) $K(W) \cap iK(W) = \{0\}$ and K(W) + iK(W) is dense in \mathscr{H}_1 .

(iii) $K(W)^{\perp} := \{ \psi \in \mathscr{H}_{1} : Im \langle \psi, \phi \rangle = 0, \ \forall \phi \in K(W) \} = K(W')$

Weyl-Quantization

The functorial procedure of Weyl (second-) quantization leads for any $\psi \in \bigcap_W K(W)$ to an (unbounded) field operator $\Psi(\phi)$ on the Fock space

$$\mathscr{H} = \oplus_{n=0}^{\infty} \mathscr{H}_1^{\otimes_s ymm}$$

such that

$$[\Psi(\psi),\Psi(\phi)] = i lm \langle \psi,\phi \rangle.$$

In particular,

$$[\Psi(\psi),\Psi(\phi)]=0,\qquad\psi\in {\cal K}(W),\,\phi\in {\cal K}(W^{'})$$

Finally, a net of algebras \mathscr{A} satisfying the axioms is defined by $\mathcal{A}(\mathcal{O}) := \{exp(i\Psi(\phi)) : \psi \in \bigcap_{\mathcal{O} \subset W} K(W)\}^{"}$.

Outline

Intro to Algebraic Quantum Field Theory

A Few Definitions General Introduction Tomita-Takesaki modular theory

AQFT in terms of Category Theory Definitions Categories

AQFT in terms of Category Theory

E. Nelson: First quantization is a mystery, second quantization (quantum field theory) is a functor!

AQFT in terms of Category Theory

E. Nelson: First quantization is a mystery, second quantization (quantum field theory) is a functor!

([BFV03]) : A local covariant quantum field theory is a functor from the category of globally hyperbolic spacetimes, with isometric hyperbolic embeddings as arrows, to the category of *-algebras, with monomorphisms as arrows.

AQFT in terms of Category Theory

E. Nelson: First quantization is a mystery, second quantization (quantum field theory) is a functor!

([BFV03]) : A local covariant quantum field theory is a functor from the category of globally hyperbolic spacetimes, with isometric hyperbolic embeddings as arrows, to the category of *-algebras, with monomorphisms as arrows.

What the heck???

Outline

Intro to Algebraic Quantum Field Theory

A Few Definitions General Introduction Tomita-Takesaki modular theory

AQFT in terms of Category Theory Definitions Categories

Definitions I

Morphism

A structure-preserving map from one mathematical structure to another.

Homomorphism

A structure-preserving map between two algebraic structures of the same type.

Monomorphism

An injective homomorphism or a left-cancellative morphism, that is, an arrow $f: X \to Y$ such that, for all morphisms $g_1, g_2: Z \to X$,

$$f \circ g_1 = f \circ g_2 \Rightarrow g_1 = g_2.$$

Definitions II

Category C, (ob(C), arrows)

- (i) A class of objects denoted by ob(C)
- (ii) A class hom(C) of morphisms, s.t. $\forall f$ has a source a and a target object b where $a, b \in ob(C)$, i.e. $f : a \rightarrow b$
- (iii) For $a, b, c \in ob(C)$, \exists a binary operation hom $(a, b) \times hom(b, c) \rightarrow hom(a, c)$ (composition); s.t.
 - (i) (associativity) if $f : a \to b, g : b \to c$ and $h : c \to d$ then $h \circ (g \circ f) = (h \circ g) \circ f$,
 - (ii) (identity) for every object $x,\,\exists$ morphism $1_x:x\to x$ called identity morphism for x

Definitions III

Functor

Let C and D be categories. A **functor** F from C to D is a mapping that associates to each object X in C an object F(X) in D and associates to each morphism $f: X \to Y$ in C a morphism $F(f): F(X) \to F(Y)$ in D s.t:

(i)
$$F(\operatorname{id}_X) = \operatorname{id}_{F(X)}$$
 for every object X in C,

(ii)
$$F(g \circ f) = F(g) \circ F(f)$$
 for all morphisms $f : X \to Y$ and $g : Y \to Z$ in C.

Functors must preserve identity morphisms and composition of morphisms.

([BFV03]) : A local covariant quantum field theory is a functor from the category of globally hyperbolic spacetimes, with isometric hyperbolic embeddings as arrows, to the category of *-algebras, with monomorphisms as arrows. ([BFV03]) : A local covariant quantum field theory is a functor from the category of globally hyperbolic spacetimes, with isometric hyperbolic embeddings as arrows, to the category of *-algebras, with monomorphisms as arrows.

Globally Hyperbolic Spacetimes???

Definitions IV

Globally hyperbolic spacetime (M, g)

M a smooth, four-dimensional, orientable and time-orientable MF!

Time-orientability: $\exists C^{\infty}$ -VF *u* on *M* s.t. g(u, u) > 0.

A smooth curve $\gamma: I \to M$, I being a connected subset of \mathbb{R} , is **causal** if $g(\dot{\gamma}, \dot{\gamma}) \ge 0$. A CC is future directed if $g(\dot{\gamma}, u) > 0$ and past directed if $g(\dot{\gamma}, u) < 0$. For any point $x \in M$, $J^{\pm}(x)$ denotes the set of all points in M which can be connected to x by a future(+)/past (-)-directed causal curve. M is **globally hyperbolic** if for $x, y \in M$ the set $J^{-}(x) \cap J^{+}(y)$ is compact if non-empty.

Intuitively: The spacetime has a Cauchy surface!

Advantage of GHST: Cauchy-problem for linear hyperbolic wave-equation is well-posed.

Isometric Embedding

Let (M_1, g_1) and (M_2, g_2) be two globally hyperbolic spacetimes. A map $\psi: M_1 \to M_2$ is called an **isometric** embedding if ψ is a diffeomorphism onto its range $\psi(M)$, i.e. $\bar{\psi}: M_1 \to \psi(M_1) \subset M_2$ is a diffeomorphism and if ψ is an isometry, that is, $\psi_*g_1 = g_2 \upharpoonright \psi(M_1)$.

Outline

Intro to Algebraic Quantum Field Theory

A Few Definitions General Introduction Tomita-Takesaki modular theory

AQFT in terms of Category Theory Definitions Categories

Categories

Man: Class of all objects Obj(Man) formed by globally hyperbolic spacetimes (M, g). Given two such objects (M_1, g_1) and (M_2, g_2) , the morphisms $\psi \in \hom_{Man}((M_1, g_1), (M_2, g_2))$ are taken to be the isometric embeddings $\psi : (M_1, g_1) \to (M_2, g_2)$ of (M_1, g_1) into (M_2, g_2) as defined above, but with constraint :

The isometric embedding preserves orientation and time-orientation of the embedded spacetime.

Alg: Category class of objects Obj(Alg) formed by all C^* -algebras possessing unit elements, and the morphisms are faithful (injective) unit-preserving *-homomorphisms. For $\alpha \in \hom_{Alg}(\mathcal{A}_1, \mathcal{A}_2)$ and $\alpha' \in \hom_{Alg}(\mathcal{A}_2, \mathcal{A}_3)$ the composition $\alpha \circ \alpha' \in \hom_{Alg}(\mathcal{A}_1, \mathcal{A}_3)$.

Locally covariant quantum field theory

(i) LCQFT is a covariant functor \mathcal{A} between the two categories *Man* and *Alg*, i.e., writing α_{ψ} for $\mathcal{A}(\psi)$:

together with the covariance properties

$$\alpha_{\psi'} \circ \alpha_{\psi} = \alpha_{\psi' \circ \psi}, \qquad \alpha_{\mathsf{id}_M} = \mathsf{id}_{\mathcal{A}(M,g)},$$

for all morphisms $\psi \in \hom_{Man}((M_1, g_1), (M_2, g_2))$, all morphisms $\psi' \in \hom_{Man}((M_2, g_2), (M_3, g_3))$ and all $(M, g) \in Obj(Man)$.

(ii) A LCQFT described by a covariant functor \mathcal{A} is called causal if: There are morphisms $\psi_j \in \hom_{Man}((M_j, g_j), (M, g)), j = 1, 2$, so that $\psi_1(M_1)$ and $\psi_2(M_2)$ are causally separated in (M, g), then

$$[\alpha_{\psi_1}(\mathcal{A}(M_1,g_1)),\alpha_{\psi_2}(\mathcal{A}(M_2,g_2))]=0,$$

(iii) We say that a locally covariant quantum field theory given by the functor ${\cal A}$ obeys the **time-slice axiom** if

$$\alpha_{\psi}(\mathcal{A}(M,g)) = \mathcal{A}(M',g')$$

holds for all $\psi \in \hom_{Man}((M,g), (M',g'))$ such that $\psi(M)$ contains a Cauchysurface for (M',g').

Example KG-field

Global hyperbolicity entails the well-posedness of the Cauchy-problem for the scalar Klein-Gordon equation on (M, g),

$$(\nabla^a \nabla_a + m^2 + \xi R)\varphi = 0$$

Let $E = E_{adv} - E_{ret}$ be the causal propagator of the Klein-Gordon equation and the range of $E(C_0^{\infty}(M, \mathbb{R}))$ is denoted by \mathcal{R} . By defining

$$\sigma(Ef, Eh) = \int_M f(Eh) d\mu_g, \qquad f, h \in C_0^\infty(M, \mathbb{R})$$

it endows \mathcal{R} with a symplectic form, and thus (\mathcal{R}, σ) is a symplectic space. \Rightarrow Weyl-algebra $\mathcal{W}(\mathcal{R}, \sigma)$, generated by $W(\phi), \phi \in \mathcal{R}$ satisfying

$$W(\phi)W(\psi) = e^{-i\sigma(\phi,\psi)}W(\phi+\psi).$$

Theorem

If one defines for each $(M,g) \in Obj(Man)$ the C^* -algebra $\mathscr{A}(M,g)$ as the CCR-algebra $\mathcal{W}(\mathcal{R}(M,g),\sigma(M,g))$ of the Klein-Gordon equation and for each $\psi \in hom_{Man}(M,M')$ the C^* -algebraic endomorphism $\alpha_{\psi} = \tilde{\alpha}_{\iota_{\psi}} \circ \tilde{\alpha}_{\psi} : \mathscr{A}(M,g) \to \mathscr{A}(M',g')$ according to (1) and (2), then one obtains in this way a covariant functor \mathscr{A} with the properties of the definitions above. Moreover, this functor is causal and fulfills the time-slice axiom.

In this sense, the free Klein-Gordon FT is a locally covariant QFT.

Thus, a locally covariant quantum field theory is an assignment of C^* -algebras to (all) globally hyperbolic spacetimes so that the algebras are identifiable when the spacetimes are isometric, in the indicated way.