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Intro to Algebraic Quantum Field Theory
A Few Definitions



Defining a x-algebra

Definition

A is called an algebra over C, if «A+ 8B with A,B € A and o, € C,
are well defined. In addition, there is a product A x A — A, which is
distributive over addition,

A(B+ C)=AB+ AC, (A+ B)C = AC + BC, VA, B, C € A.

The algebra A is called a unital algebra if it has a unit 1.

Definition

An algebra A is called a *-algebra if it admits an involution * : A — A:
A=A, (AB)*=B*A*,  (aA+ BB)* =aA* + BB

for any A,B € Aand o, € C.



Defining a normed-algebra

Definition
An algebra A with a norm ||-|| : A — R is called a normed algebra if:

Al =0, |A[| =0« A=0, [aA[l = [af[|All,
A+ Bl < Al + B IAB| < [IA[lllBI|
forany A, B€ A and o, € C.
Norm topology: The neighborhoods of any A € A are given by

UA). ={BeA:[|[A—B| <¢}), e>0.



Bounded Operators

Definition
B(42) := set of all bounded, linear operators acting in a Hilbert space
. The norm is given by

A
A = sup 128 < o0

ver |l

A x-sub-algebra of B(.5¢) is a subset S C B(.57) such that it is also
x-algebra (i.e. A€ S, A* €S).

Definition

A x-sub algebra of B(J#) is called a C*-algebra if it is a normed
x-algebra which is uniformly closed and whose norm satisfies additionally

IA*Al =A%, Aec A



Von Neumann Algebras

Definition
A weakly closed x-sub-algebra of B(.7#°) containing the unit operator is
called a von Neumann algebra.

Definition
The commutant of an arbitrary subset S C B(5¢), denoted by S | is the
set of all bounded operators that commute with all elements of S.

Theorem
Let S C B(J7) be a self-adjoint set. Then

(a) S' is a von Neumann algebra.
(b) S” =(S') is the smallest von Neumann algebra containing S

(C) 5/// _ S/



Outline

Intro to Algebraic Quantum Field Theory

General Introduction



Motivation for AQFT

(a) Incorporate principles of quantum mechanics and special relativity

(b) Mathematical rigorous QFT relying on fundamental principles

(c) Construct (or solve) four-dimensional interacting QFT!



Technical problems that formulation of spaces of states:

(a) In QFT the Stone-von Neumann theorem fails = representation of
Weyl-group on the state space non-unique = Requiring choice of
representation.

(b) Renormalization theory formulation in terms of states = infrared
problems = Absent in Formulation in terms of observables
(DuetschFredenhagen).



The general assumptions

(a) Separable Hilbert space H of state vectors.
(b) Unitary representation U(a, ) of the Poincaré group PI on H
(c) Invariant, normalized state vector Q € H (vacuum)

(d) A family of x-algebras A(QO) of operators on H (a “field net"),
indexed by regions O C R*

(e) Isotony: ./4(01) C ./4(02) if 01 C O,

Assumption: Operators are bounded and algebras are closed in the weak
operator topology, i.e. = von Neumann algebras.



Axioms (Haag-Kastler Axioms)

(i) Local (anti-)commutativity: A(O;) (anti-)commutes with A(O,)
if 01 and O, space-like separated.

(i) Covariance: U(a,N)A(O)U(a,\)"t = A(NO + a).

(iii) Spectrum condition: The energy momentum spectrum, i.e. of the
generators of the translations U(a) lies in V.

(iv) Cyclicity of the vacuum: Up A(O)Q is dense in 7.
Example: Free Field

(O+m?)¢ =0,
Algebra of observables generated by

A(0) = {1 suppf c 0}"



Theorems

(i) Reeh-Schlieder Theorem

(i) Spin-Statistics Theorem generalized to curved space-times using
AQFT (Verch01)

(iii) Bisognano-Wichmann Theorem



Reeh-Schlieder Theorem

Additional assumption on A(Q), weak additivity:
For every fixed open set Oy the algebra generated by the union of all
translates, A(Qp + x), is dense in the union of all A(Q) in the w. o. t.

Theorem

Under the assumption of weak additivity, A(O) is dense in the Hilbert
space JZ for all open sets O = Q is cyclic and separating for every local
algebra A(O). (separating AQ =0=A=0)

Proof.

Pick Og C O such that Op +x C O for all x with |x| < ¢, for some ¢ > 0.
Ifv L A(O)Q then <\U, U(Xl)Al U(X2 — Xl) ce- U(Xn — anl)AnQ> =0
for all A; € Op and |x;| < e. Analyticity of U(a) = Vx;. Theorem follows
by weak additivity. O
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Tomita-Takesaki modular theory

Ingredients : a von Neumann algebra A together with a cyclic and
separating vector Q. To every such pair

(i) Define an anti-linear operator S : AQ — AQ by
SAQ = A*Q.

S is well defined on a dense set in 5 since (Q is separating and
cyclic.

(ii) It has a polar decomposition S = JA'/?2 = A~1/2J with the
modular operator A = 5*S > 0 and the anti-unitary modular
conjugation J with J? = 1.



Theorem: Modular group and KMS-condition

ATAATE = A, VteR, JAS=A

Moreover, for A,B € A

(Q,ABQ) = (Q, BAT1AQ)

= Equivalent to the Kubo-Martin Schwinger (KMS) condition that
characterizes thermal equilibrium states w.r.t. “time” evolution

A= ai(A) = ATAATT = A

on A.



Wedge

A space-like wedge W is, by definition, a Poincaré transform of the
standard wedge Wr = {x € R : |xo| < x1}, i.e.

Wh Wk

To W is associated a one-parameter family Ay (s) of Lorentz boosts that
leave W invariant and a reflection j,, that maps W into the opposite
wedge : product of space-time inversion 6 and a rotation R(r) around
the 1-axis.



Bisognano-Wichmann Theorem

Consider algebras A(W) with vacuum Q as cyclic and separating vector.
The modular objects A and J associated with (A(W),2) depend on W
but it is sufficient to consider Wkg.

BW75 discovered A and J are related to the representation U of the
Lorentz group and the PCT operator 6 as:

Theorem Bisognano-Wichmann

J =0 U(R(m)), A" = U(Aw,(27t))

= Modular localization associates a localization structure with any
anti-)

i-)unitary representation of PI satisfying the spectrum condition:

Weyl quantization generates naturally a local net satisfying all the axioms
of a AQFT!



Example: Free Bosonic Field

Let U be an (anti-)unitary representation of Pjr satisfying the spectrum
condition on 7. For a wedge W, let Ay be

Al = U(Aw(27t))
and let Jy, be the anti-unitary involution representing jyy, define:
Sw = JwAl>.
The space
K(W) := {¢ € domain A} : Swé = ¢} C 4

satisfies:

(i) K(W) is a closed real subspace of 7] in the real sp

(i) K(W)NniK(W) = {0} and K(W) + iK(W) is dense in 4.
(i) K(W)L = {p € S : Im(p),¢) =0, Yo € K(W)} = K(W')



Weyl-Quantization

The functorial procedure of Weyl (second-) quantization leads for any
1 €y K(W) to an (unbounded) field operator W(¢) on the Fock space

= @;u;ojfi@symm
such that
[V(), V()] = ilm(y, ¢).
In particular,

W), ¥(@)] =0, veK(W),peKW)

Finally, a net of algebras <7 satisfying the axioms is defined by
A(O) = {exp(iV(8)) : ¥ € Nocw K(W)} .
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AQFT in terms of Category Theory

E. Nelson: First quantization is a mystery, second quantization (quantum
field theory) is a functor!

([BFVO03]) : A local covariant quantum field theory is a functor from the
category of globally hyperbolic spacetimes, with isometric hyperbolic
embeddings as arrows, to the category of x—algebras, with

monomorphisms as arrows.

What the heck??7
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Definitions |

Morphism

A structure-preserving map from one mathematical structure to another.

Homomorphism
A structure-preserving map between two algebraic structures of the same

type.

Monomorphism
An injective homomorphism or a left-cancellative morphism, that is, an
arrow f : X — Y such that, for all morphisms g1,82 : Z — X,

fogi=Ffogm=g1=g.



Definitions |l

Category C, (ob(C), arrows)

(i) A class of objects denoted by ob(C)
(ii) A class hom(C) of morphisms, s.t. Vf has a source a and a target
object b where a,b € ob(C), ie. f:a— b
(iii) For a, b,c € ob(C), 3 a binary operation
hom(a, b) x hom(b, ¢) — hom(a, ¢) (composition); s.t.
(i) (associativity) if f:a— b,g:b— cand h: c — d then
ho(gof)=(hog)of,

(i) (identity) for every object x, 3 morphism 1, : x — x called
identity morphism for x



Definitions Il

Functor

Let C and D be categories. A functor F from C to D is a mapping that
associates to each object X in C an object F(X) in D and associates to
each morphism f : X — Y in C a morphism F(f): F(X) — F(Y)in D

s.t:

(i) F(idx) =idp(x) for every object X in C,

(i) F(gof)= F(g)o F(f) for all morphisms f : X — Y and
g:Y—>ZinC.

Functors must preserve identity morphisms and composition of
morphisms.



([BFVO03]) : A local covariant quantum field theory is a functor from the
category of globally hyperbolic spacetimes, with isometric hyperbolic
embeddings as arrows, to the category of x—algebras, with
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([BFVO03]) : A local covariant quantum field theory is a functor from the
category of globally hyperbolic spacetimes, with isometric hyperbolic
embeddings as arrows, to the category of x—algebras, with

monomorphisms as arrows.

Globally Hyperbolic Spacetimes??7?



Definitions 1V

Globally hyperbolic spacetime (M, g)

M a smooth, four-dimensional, orientable and time-orientable MF!
Time-orientability: 3 C>*-VF v on M s.t. g(u,u) > 0.

A smooth curve v : | — M, | being a connected subset of R, is causal if
g(%,%) > 0. A CC is future directed if g(7,u) > 0 and past directed if
g(%, u) < 0. For any point x € M, J*(x) denotes the set of all points in
M which can be connected to x by a future(+)/past (—)-directed causal
curve. M is globally hyperbolic if for x,y € M the set J=(x) N J*(y) is
compact if non-empty.



Intuitively: The spacetime has a Cauchy surface!

Advantage of GHST: Cauchy-problem for linear hyperbolic wave-equation
is well-posed.

Isometric Embedding

Let (M1, g1) and (Ms, g») be two globally hyperbolic spacetimes. A map
1 : My — My is called an isometric embedding if ¢ is a diffeomorphism
onto its range (M), i.e. 1 : My — (M) C M, is a diffeomorphism
and if ¢ is an isometry, that is, ¥.g1 = g [ ¥(My).
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Categories

Man: Class of all objects Obj(Man) formed by globally hyperbolic
spacetimes (M, g). Given two such objects (My, g1) and (M>, g»), the
morphisms v € hompa,((M1, g1), (Ma, g2)) are taken to be the isometric
embeddings ¢ : (My, g1) — (M>, &) of (M1, g1) into (M, g») as defined
above, but with constraint :

The isometric embedding preserves orientation and time-orientation
of the embedded spacetime.

Alg: Category class of objects Obj(Alg) formed by all C* -algebras
possessing unit elements, and the morphisms are faithful (injective)
unit-preserving *-homomorphisms. For oo € homai (A1, A;) and
o’ € homay (A2, A3) the composition a0 @’ € homajg (A1, As).



Locally covariant quantum field theory

(i) LCQFT is a covariant functor A between the two categories Man and
Alg, i.e., writing oy, for A(v):

ﬂ‘ ’ I
(M,g) —— (M',¢")
o o
ey
(M, g) o (Mg

together with the covariance properties

Qypr 0y = Qyroy,  Qidy = 1da(m,g)

for all morphisms ¢ € hompa,((My, g1), (M2, g)), all morphisms
" € hompan((Ma, &), (M3, g3)) and all (M, g) € Obj(Man).



(i) A LCQFT described by a covariant functor A is called causal if:
There are morphisms v; € hompn((M;, g;), (M, g)),j = 1,2, so that
¥1(My) and >(M,) are causally separated in (M, g), then

[y, (A(My, 81)), v, (A(M2, 82))] = 0,
(iii) We say that a locally covariant quantum field theory given by the
functor A obeys the time-slice axiom if
ay(A(M, g)) = AM'. g’)

holds for all ¢ € homp,((M, g),(M’, g’)) such that /(M) contains a
Cauchysurface for (M’ g’).



Example KG-field

Global hyperbolicity entails the well-posedness of the Cauchy-problem for
the scalar Klein-Gordon equation on (M, g),

(VV,+ m? +ER)p =0

Let E = E,q, — Eje: be the causal propagator of the Klein-Gordon
equation and the range of E(C§°(M,R)) is denoted by R. By defining

o(Ef, Eh):/ f(Eh)dpg,  f,he GO(M,R)
M

it endows R with a symplectic form, and thus (R, ) is a symplectic
space. = Weyl-algebra W(R, o), generated by W(¢), ¢ € R satisfying

W(p)W(1p) = e @I W (¢ + 1))



Theorem

If one defines for each (M, g) € Obj(Man) the C* -algebra </ (M, g) as
the CCR-algebra W(R(M, g), (M, g)) of the Klein-Gordon equation
and for each ¢ € hompan(M, M,) the C*-algebraic endomorphism

ay =&, 00y : o (M,g)— /(M g") according to (1) and (2), then
one obtains in this way a covariant functor < with the properties of the
definitions above. Moreover, this functor is causal and fulfills the
time-slice axiom.

In this sense, the free Klein-Gordon FT is a locally covariant QFT.



Thus, a locally covariant quantum field theory is an assignment of
C*-algebras to (all) globally hyperbolic spacetimes so that the algebras
are identifiable when the spacetimes are isometric, in the indicated way.
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