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The general assumptions

(a) Separable Hilbert space H of state vectors.

(b) Unitary representation U(a,Λ) of the Poincaré group P↑+ on H

(c) Invariant, normalized state vector Ω ∈ H (vacuum)

(d) A family of ∗-algebras A(O) of operators on H (a ��eld net�),
indexed by regions O ⊂ R4

(e) Isotony: A(O1) ⊂ A(O2) if O1 ⊂ O2

Assumption: Operators are bounded and algebras are closed in the weak
operator topology, i.e. ⇒ von Neumann algebras.



Axioms (Haag-Kastler Axioms)

(i) Local (anti-)commutativity : A(O1) (anti-)commutes with A(O2)
if O1 and O2 space-like separated.

(ii) Covariance: U(a,Λ)A(O)U(a,Λ)−1 = A(ΛO + a).

(iii) Spectrum condition: The energy momentum spectrum, i.e. of the
generators of the translations U(a) lies in V+.

(iv) Cyclicity of the vacuum: ∪OA(O)Ω is dense in H .

Example: Free Field

(� + m2)φ = 0,

Algebra of observables generated by

A(O) := {e iφ(f ), suppf ⊂ O}
′′
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Motivation

QF on Minkowski Spacetime covariant under Poincaré transformations
and ∃ vacuum states ⇒ QF on curved spacetime do not possess in
general concept of covariance ⇒ ambiguities in determination of states
and physical quantities (energy-momentum tensor)

Wald[94] de�ned renormalized energy-momentum tensor

T ren
µν (x) = lim

y→x
(Tµν(x , y)− tµν(x , y))

where tµν is the EV w.r.t a quasi-free Hadamard state ω as "reference
state"

tµν(x , y) = ω(Tµν(x , y))

⇒ T ren
µν (x) exists as a well de�ned op.v.d. in all representations induced

by arbitrary Hadamard states.
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Motivation

Problem:

For renormalized energy-momentum tensor there is a
non-uniqueness of reference states!

Wald solved it by imposing as a principle of locality and covariance that
energy-momentum tensor only locally depends on the spacetime metric.

Sketch: Assume one has a prescription for T ren
µν (x) on any curved

(globally hyperbolic) spacetime ⇒ Let κ be an isometric di�eomorphism
(κ∗g = g ′) and α′κ : AM′(O′)→ AM(O) is a canonical isomorphism
between the local CCR algebras then EMT is covariant and local if:

α′κ(T
′ren
µν (x ′)) = κ∗T

ren
µν (x),

where x ′ ∈ O′ ⊂ M ′, x ∈ O ⊂ M.
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Motivation

From the prescription two things should be noted:

(i) The neighborhood O was arbitrary

(ii) Condition uses the fact that QFT can be de�ned on any globally
hyperbolic spacetime and using an algebraic isomorphism α′κ one
can identify QFT's on isometrically di�eomorphic subregions of
globally hyperbolic spacetimes

⇒ Main Purpose of AQFT in terms of Category Theory : Formalization
of these properties



AQFT in terms of Category Theory

E. Nelson: First quantization is a mystery, second quantization (quantum
�eld theory) is a functor!

([BFV03]) : A local covariant quantum �eld theory is a functor from the
category of globally hyperbolic spacetimes, with isometric hyperbolic

embeddings as arrows, to the category of ∗−algebras, with
monomorphisms as arrows.

What the heck???
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De�nitions I

Morphism
A structure-preserving map from one mathematical structure to another.

Homomorphism
A structure-preserving map between two algebraic structures of the same
type.

Monomorphism
An injective homomorphism or a left-cancellative morphism, that is, an
arrow f : X → Y such that, for all morphisms g1, g2 : Z → X ,

f ◦ g1 = f ◦ g2 ⇒ g1 = g2.



De�nitions II

Category C , (ob(C), arrows)

(i) A class of objects denoted by ob(C)

(ii) A class hom(C ) of morphisms, s.t. ∀f has a source a and a target
object b where a, b ∈ ob(C), i.e. f : a→ b

(iii) For a, b, c ∈ ob(C), ∃ a binary operation
hom(a, b)× hom(b, c)→ hom(a, c) (composition); s.t.

(i) (associativity) if f : a→ b, g : b → c and h : c → d then
h ◦ (g ◦ f ) = (h ◦ g) ◦ f ,

(ii) (identity) for every object x , ∃ morphism 1x : x → x called
identity morphism for x



De�nitions III

Functor
Let C and D be categories. A functor F from C to D is a mapping that
associates to each object X in C an object F (X ) in D and associates to
each morphism f : X → Y in C a morphism F (f ) : F (X )→ F (Y ) in D
s.t:

(i) F (idX ) = idF (X ) for every object X in C ,

(ii) F (g ◦ f ) = F (g) ◦ F (f ) for all morphisms f : X → Y and
g : Y → Z in C .

Functors must preserve identity morphisms and composition of
morphisms.
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De�nitions IV

Globally hyperbolic spacetime (M , g)
M a smooth, four-dimensional, orientable and time-orientable MF!

Time-orientability: ∃C∞-VF u on M s.t. g(u, u) > 0.

A smooth curve γ : I → M, I being a connected subset of R, is causal if
g(γ̇, γ̇) ≥ 0. A CC is future directed if g(γ̇, u) > 0 and past directed if
g(γ̇, u) < 0.

For any point x ∈ M, J±(x) denotes the set of all points in M which can
be connected to x by a future(+)/past (−)-directed causal curve.

M is globally hyperbolic if for x , y ∈ M the set J−(x) ∩ J+(y) is
compact if non-empty.



Intuitively: The spacetime has a Cauchy surface!

Advantage of GHST: Cauchy-problem for linear hyperbolic wave-equation
is well-posed.

Isometric Embedding
Let (M1, g1) and (M2, g2) be two globally hyperbolic spacetimes. A map
ψ : M1 → M2 is called an isometric embedding if ψ is a di�eomorphism
onto its range ψ(M), i.e. ψ̄ : M1 → ψ(M1) ⊂ M2 is a di�eomorphism
and if ψ is an isometry, that is, ψ∗g1 = g2 � ψ(M1).
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Categories

Man: Class of all objects Obj(Man) formed by globally hyperbolic
spacetimes (M, g). Given two such objects (M1, g1) and (M2, g2), the
morphisms ψ ∈ homMan((M1, g1), (M2, g2)) are taken to be the isometric
embeddings ψ : (M1, g1)→ (M2, g2) of (M1, g1) into (M2, g2) as de�ned
above, but with constraint :

The isometric embedding preserves orientation and time-orientation
of the embedded spacetime.

Alg: Category class of objects Obj(Alg) formed by all C∗ -algebras
possessing unit elements, and the morphisms are faithful (injective)
unit-preserving ∗-homomorphisms. For α ∈ homAlg (A1,A2) and
α′ ∈ homAlg (A2,A3) the composition α ◦ α′ ∈ homAlg (A1,A3).



Locally covariant quantum �eld theory

(i) LCQFT is a covariant functor A between the two categories Man and
Alg , i.e., writing αψ for A (ψ):

together with the covariance properties

αψ′ ◦ αψ = αψ′◦ψ, αidM = idA (M,g),

for all morphisms ψ ∈ homMan((M1, g1), (M2, g2)), all morphisms
ψ′ ∈ homMan((M2, g2), (M3, g3)) and all (M, g) ∈ Obj(Man).



(ii) A LCQFT described by a covariant functor A is called causal if:
There are morphisms ψj ∈ homMan((Mj , gj), (M, g)), j = 1, 2, so that
ψ1(M1) and ψ2(M2) are causally separated in (M, g), then

[αψ1(A (M1, g1)), αψ2(A (M2, g2))] = 0,

(iii) We say that a locally covariant quantum �eld theory given by the
functor A obeys the time-slice axiom if

αψ(A (M, g)) = A (M ′, g ′)

holds for all ψ ∈ homMan((M, g), (M ′, g ′)) such that ψ(M) contains a
Cauchysurface for (M ′, g ′).



Example KG-�eld

Global hyperbolicity entails the well-posedness of the Cauchy-problem for
the scalar Klein-Gordon equation on (M, g),

(∇a∇a + m2 + ξR)ϕ = 0

Let E = Eadv − Eret be the causal propagator of the Klein-Gordon
equation and the range of E (C∞0 (M,R)) is denoted by R. By de�ning

σ(f ,Eh) =

∫
M

f (Eh)dµg , f , h ∈ C∞0 (M,R)

it endows R with a symplectic form, and thus (R, σ) is a symplectic
space. ⇒ Weyl-algebra A (M, g) =W(R, σ), generated by
W (φ), φ ∈ R satisfying

W (φ)W (ψ) = e−iσ(φ,ψ)W (φ+ ψ).



Example KG-�eld

(E ,R, σ) denotes the propagator, the range space and the symplectic
form corresponding to a KG-�eld on (M, g), (E ′,R′, σ′) denotes the
same for (M ′, g ′) and (Eψ,Rψ, σψ) for the spacetime (ψ(M), ψ∗g).

∃ C∗-alg. iso., α̃ψ :W(R, σ)→W(Rψ, σψ) so that

α̃ψ(W (φ)) = W ψ(ψ∗(φ)), φ ∈ R

∃ a symplectic map Tψ : (Rψ, σψ)→ (R′, σ′) assigns to each element
Ef → E ′ιψ∗f ⇒ a C∗-alg. endom. α̃ιψ :W(Rψ, σψ)→W(R′, σ′):

α̃ιψ (W ψ(φ)) = W ′(Tψφ), φ ∈ Rψ



Theorem
By de�ning for each (M, g) ∈ Obj(Man) the C∗ -algebra
A (M, g) =W(R, σ) of the KG equation and for each ψ ∈ hom(M,M

′
)

the C∗-algebraic endomorphism αψ = α̃ιψ ◦ α̃ψ : A (M, g)→ A (M ′, g ′),
then one obtains a covariant functor A with the properties of the
de�nitions above. Moreover, this functor is causal and ful�lls the
time-slice axiom.

In this sense, the free Klein-Gordon FT is a locally covariant QFT!
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Recovering AQFT I

For each element L ∈ P↑+ ∃ C∗-algebra A automorphism αL : A → A:

αL1 ◦ αL2 = αL1◦L2 , L1, L2 ∈ P↑+

K(M, g) denotes the set of all subsets in M which are relatively compact
and contain with each pair of points x and y also all g -causal curves in
M connecting x and y . Given O ∈ K(M, g) we denote gO the Lorentzian
metric restricted to O so that the injection map ιM,O : (O, gO)→ (M, g)
is the identical map restricted to O.



Recovering AQFT II

Proposition
Let A be a covariant functor with the properties stated in the De�nition
of a locally covariant QFT and de�ne a map O 7→ A(O) ⊂ A (M, g) by
setting

A(O) := αιM,O (A (O, gO))

(a) The map ful�lls isotony,

O1 ⊂ O2 ⇒ A(O1) ⊂ A(O2), ∀O1,O2 ∈ K(M, g)

(b) If ∃ a group G of isometric di�eomorphisms κ : M → M preserving
orientation and time-orientation,then there is a representation of G by a
C∗-algebra automorphism α̃κ : A → A such that

α̃κ(A(O)) = A(κ(O)), O ∈ K(M, g)



Recovering AQFT II

(c) If the theory given by A is additionally causal, then it holds

[A(O1),A(O2)] = {0}

for all O1,O2 ∈ K(M, g) with O1 causally separated from O2.
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Conclusion and Outlook

(i) A locally covariant quantum �eld theory is an assignment of
C∗-algebras to (all) globally hyperbolic spacetimes so that the
algebras are identi�able when the spacetimes are isometric, in the
indicated way.

(ii) Holds for the Klein-Gordon �eld on a curved spacetime

(iii) Recovered AQFT in this framework

(iv) Framework possibly allows to de�ne an isomorphism between AQFT
and TQFT*

*Joint work with Robert Oeckl



Conclusion and Outlook

Thank you for your attention!
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