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Hypotheses

The arena for classical field theory is spacetime
– a four dimensional differentiable manifold –.

Einstein’s theory of General Relativity sets
spacetime geometry as a dynamical field
interacting with matter fields.

Since the causal structure follows from spacetime geometry,
spacetime has no predetermined causal structure
(unless gravity is not among the dyn. fields under study).
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Consider a spacetime region U ⊂ M possibly with boundary,
which may be subdivided U = U1#ΣU2

 

�
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First-order Lagrangian field theory in U ⊂ M .

Histories:

U 7−→ Y |U ,
HistsU 3 Φ : U → Y |U section

∂U 7−→ Y |∂U ,

Hists∂U 3 φ : ∂U → Y |∂U

We will display histories as

jΦ(x) = (x i , uα = Φα(x), vαi = ∂iΦα(x), . . .) ∈ JY |U

If truncated to 1st order the notation will be j1Φ ∈ JY 1|U .
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First-order Lagrangian field theory in U ⊂ M .

Variations of histories:

Φt curve of histories starting at Φt=0 = Φ0
with tangent vector at t = 0 denoted by δΦV
and described by an evolutionary vector field V ∈ EvU

V : Y |U → TY |U

(not really a VF) in Y |U defined in a neighborhood of Φ0(U )
V (x,Φ0(x)) = 0 ∂

∂xi + bα ∂
∂uα

where bα may depend on Φ0 and all its partial derivatives.
The variation generator is displayed as

jV (jΦ(x)) = (0, va(jφ(x)), va
i (jφ(x)), ...)
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First-order Lagrangian field theory in U ⊂ M .

Differentials and Lie derivative:

The differential in the jet splits as d = dv + dh
where jφ∗dh = djφ∗, d2

v = d2
h = 0, dvdh = dhdv .

The space of k-differential forms splits into a sum of spaces of
forms with definite horizontal and vertical degrees
Ωr s(JY ) with r + s = k,
and dv , dh increase the corresp. degree by one.

Given an evolutionary vector field V the Lie derivative of
µ ∈ Ωr s(JY ) is

LjVµ
.= (dvιjV + ιjV dv)µ.
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First-order Lagrangian field theory in U ⊂ M .
Dynamics is determined by the action

SU [φ] =
∫

U
L ◦ j1φ, L(j1φ(x)) = L(x i ,Φα(x), ∂iΦα(x))

dSU [δφV ] =
∫

U
jφ∗LjV L =

∫
U

jφ∗ιjV E(L) +
∫
∂U

jφ∗ιjV ΘL,

or dvL = E(L) + dhΘL , where E(L) = IdvL is an int. by parts op.

Hamilton’s principle gives us:
(i) the field equation
jφ∗ιjV E(L) = 0∀V ⇒ φ ∈ SolsU or jφ(U ) ⊂ EL and
(ii) a cons. law for the (pre) symplectic current2 ΩL

.= −dvΘL.

dhΩL|EL,FL = 0 or

ω∂U (δφV , δφW ) =
∫
∂U

jφ∗W ιjV ΩL = 0, ∀φ ∈ SolsU , V ,W ∈ FL.

2There is a “corner ambiguity” in ΘL and in ΩL.
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Summary up to now

U 7−→ Y |U , JY |U ⊃ EL U (fits in J 2Y )
HistsU ⊃ SolsU

EvU ⊃ FU los que preservan EL U

∂U 7−→ Y |∂U , JY |∂U ⊃ EL ∂U = (EL U ∪ JY |∂U )
Hists∂U ⊃ Sols∂U germs of sols. 1st ord. data for 2PDEs
Ev∂U ⊃ F∂U los que preservan EL ∂U

The conservation law for ΩL can be described as

SolsU 7−→ (Sols∂U , ω∂U ) as a Lagrangian subspace.

In general there are “constraints” among 1st ord. bdary data:
global compat. (as in ∂U = Σ1 − Σ0), and local constraints.
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Gauge from holography: a sketch of the argument
Consider an imaginary division of a spacetime region
U = U1#ΣU2 and a solution φ = φ1#Σφ2.

 

�
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Gauge from holography: a sketch of the argument

A perturbation V1 of φ1 is coupled to V2 by means of its
first-order holographic imprint “V1|Σ”.

The linearized gluing field equation “LGΣ”
correlating V1|Σ with V2|Σ may have a nontrivial null space.
Some V1 6= 0 may be physically irrelevant in U2.

Newton’s Principle of Determinacy tells us that
if V1|Σ ∈ Ker(LGΣ) for any Σ
then physically speaking V1 ∼ 0.

This criterion, together with a locality requirement,
leads to the notion of gauge equivalence in
first-order Lagrangian field theory.
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Details in the argument
Consider a physical field φ = φ1#Σφ2 over U .
dSU [δφV ] = dSU1 [δφV1 ] + dSU2 [δφV2 ] includes the term∫

Σ
(jφ∗1ιjV1ΘL − jφ∗2ιjV2ΘL)

leading to a gluing equation for φa demanding
momentum flux matching at Σ.

A physical perturbation of the field V = V1#ΣV2 obeys:
(i) the linearized field equation at U1 and U2,
(ii) 0th order continuity along Σ, and
(iii) the linearized gluing equation LGΣ

ιjV1ΩL|Σ ' −ιjV2ΩL|Σ (apart from bdry terms; no ambg.).

A physical perturbation whose 1st order holographic imprint
jV1|Σ ∈ Ker(LGΣ) (Σ ∼ Σ′ = Σ + ∂B)

does not carry any transversal information through Σ,
hence the reference to a holographic principle. 12 / 35



Locality of measurement
There are currents F defined only up to cohomology class
leading to observables through integration

fΣ[φ] =
∫

Σ
jφ∗F .

A class of examples is given by ΩL contracted with a pair of
physical perturbations

ωΣ[φ,V ,W ] =
∫

Σ
jφ∗ιjW ιjV ΩL.

The locality condition amounts to requiring that
for any hypersurface with ∂Σ ⊂ ∂U
integrals of this type can be evaluated and are gauge invariant.
In a mutiplisubdivided domain which contains a Cauchy surface
fΣ = fΣ1 + fΣ2 + . . .
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Relativity of measurement

Measuring a property of φ|U
relative to properties of the field outside of U
may be done in the 1st order formalism
using properties of jφ|∂U as a reference.

It is convenient to keep the reference gauge invariant.
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Gauge equivalence

Definition (Gauge perturbations)

Given a solution φ of the field equation over U ,
a solution V of the linearized field equation around φ
is declared to be a gauge perturbation if and only if:

(i) V is in the null space of all linearized gluing field equations, i.e.

jφ∗ιjV ΩL|FL is a pure divergence (no ambg.), or equiv.

dhιjV ΩL|EL,FL = 0

and

(ii) j1V |∂U ' 0.

The space of gauge vector fields will be denoted by GU ⊂ FU .
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Gauge equivalence

Te prolongation of a VF in V ∈ FU to the infinite jet JY leads to
an ordinary VF jV in JY.

It is easy to verify that j(GU ) ⊂ j(FU ) is a Lie subalgebra.
Gauge VFs generate orbits in SolsU
i.e. gauge equiv. classes of solutions.

We will talk about the gauge group GU acting on SolsU .
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Remarks

I The usual definition of gauge perturbations in terms of local
symmetries of the Lagrangian implies (i); see for example [2].

I Conditions equivalent to (i) have been conjectured to imply
the usual definition [3].
It is the usual notion of gauge for Yang-Mills and
General Relativity.

I The derivation of (i) in terms of the linearized gluing field
equation is, to the best of my knowledge, new.

I An alternative to condition (ii) is to add boundary degrees of
freedom [1].
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End of Part 1

– – –

Beginning of Part 2
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Codim 1 surfaces
The importance of codim 1 surfaces such that ∂Σ ⊂ ∂U
is that they separate spacetime into two connected
components

U = U1#ΣU2.

“Any communication between U1 and U2 must cross Σ”.
(Admissible) 1st order data at Σ locally determine solutions of 2nd
order PDEs.

Consider M with a Cauchy surf. and a subd. of M into cells {Ui}.
Due to (the locality) Condition (ii) in the defn. of gauge VFs
given V ; W ∈ FG

U

ωΣ(δφV , δφW ) =
∫

Σ
jφ∗ιjW ιjV ΩL =

∑
i
ωΣi (δφV |Ui , δφW |Ui )

with each term GUi invariant and the sum GU invariant.
Each term afected by the “corner ambiguity” but not the sum
(unless Sup(V ) and Sup(W ) intersect ∂U ).
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Summary up to now

U 7−→ Y |U , JY |U ⊃ EL U

HistsU ⊃ SolsU → (Sols/G)U

EvU ⊃ FU ⊃ FGU → (F//G)U

Σ 7−→ Y |Σ, JY |Σ ⊃ EL Σ ↔ E1
L Σ ⊂ J 1Y |Σ

HistsΣ ⊃ SolsΣ → (Sols/G)Σ with symp. str. ωred
Σ

EvΣ ⊃ FΣ ⊃ FGΣ → (F//G)Σ

^ Multisympl.: The cons. law for ΩL can be understood as a
compatibility property of Σ ΩL7−→ (Γ(J 1Y |Σ), ωΣ)

SolsU 7−→ (Γ(J 1Y |∂U ), ω∂U ) as a Lagrangian subspace.

In general there are “constraints” among 1st ord. bdary data:
global compat. (as in ∂U = Σ1 − Σ0), and local constraints.
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Gluing spacetime localized subsystems

There are gauge perts. at U = U1#ΣU2 not vanishing over Σ.
Considered over Ui these perts. are nontrivial symm. generators,
but considered over U they are gauge perts.

The neglected gauge perturbations before gluing are
GΣ = GU/(GU1#ΣGU2).

Proposition

(Sols/G)U = ((Sols/G)U1#Σ(Sols/G)U2) /GΣ,
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Observables
SU and the variational principle lead to a model of dynamics
in the absence of measuring devices disturbing the system.

SU + λf n
U 7→ φλ = φ0 + λδφVf n + O(λ2)

models the system together with a “minimally-disturbing
apparatus” in U measuring the property of the system

f n
U : HistsU → R

(defined in a certain open Domainf ⊂ HistsU ).
The Peierls bracket uses this idea to construct a map

f n
U 7→ Vf n ∈ FU .

The boundary conditions used in the construction of
Vf n = V +

f n −V−f n are advanced and retarded respectively.
Conditions of this type are not immediately extendible to
boundaries ∂U 6= Σ1 − Σ0.

This point of view motivates: formal deformation quantization and
strict deformation quantization. 22 / 35



Observables
^ Multisympl.: Σ ΩL7−→ (Γ(J 1Y |Σ), ωΣ).
Observables f n−1

Σ : Γ(J 1Y |Σ)R

f n−1
Σ [φ] =

∫
Σ

jφ∗F

may follow a conservation law compatible with the compat. cond.
of ΩL (inv. under Σ→ Σ′ = Σ + ∂B) and they play a double role:

(i) measure a local property of the system (above formula)
(ii) generate transformations in Γ(J 1Y |Σ) by Xf ∈ FLH

Σ determ.
by df n−1

Σ [φ] = −ιXfωΣ[φ] = −
∫
Σ jφ∗ιXf ΩL or by

dvF = −ιXF ΩL + dhσF .

Warning: An interesting enough algebra of VFs in Γ(J 1Y |Σ)
requires XF to be an evolutionary VF in J 1Y or a VF in JY .
This forces F to be a conserved current in JY |U .

23 / 35



Observable Currents

A locally defined current F ∈ Ωn−1,0(JY |U )
which is conserved and gauge invariant
is called an observable current, F ∈ OCU .

I Observables induced by observable currents
separate points in (Sols/G)U .

I The assignment OCU ⊃ OCH
U 3 F 7−→ XF ∈ FLH

U
yields a Lie algebra structure in OCU = OCH

U .
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Gluing spacetime localized subsystems

There are gauge perts. at U = U1#ΣU2 not vanishing over Σ.
Considered over Ui these perts. are nontrivial symm. generators,
but considered over U they are gauge perts.

The neglected gauge perturbations before gluing are
GΣ = GU/(GU1#ΣGU2).

Proposition

(Sols/G)U = ((Sols/G)U1#Σ(Sols/G)U2) /GΣ,

OCU = InvGΣ(OCU1#ΣOCU2) .

25 / 35



Looking for interesting gravitational observables

I Any function of φ|∂U evaluated on solutions is an observable.
The origin of this wealth of observables is our choice of having
a gauge invariant reference at ∂U .

I We will look for interesting observables guided by the
geometric structure of the field theory.
We will study locally Hamiltonian perturbations and “locally
defined” observables related to them.
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Observable currents from vector fields
The integration of an observable current F ∈ OCU

fΣ[φ] =
∫

Σ
jφ∗F .

is an observable fΣ : SolsU → R if ∂Σ ⊂ ∂U ,
which is invariant under Σ→ Σ′ = Σ + ∂U ′.

Locally defined observable currents of this type, FV ∈ OCU ,
may be constr. from locally Ham. vector fields V in SolsU :
V ΩL7−→ dvFV 7→ FV (up to a “constant”).

Also FVW = ιjW ιjV ΩL ∈ OCU , defined for any pair of physical
perturbations V ,W yields the observable

ωΣ[φ,V ,W ] =
∫

Σ
jφ∗FVW .
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Gravitational observables related to would be gauge d.o.f.

In GR on a confined spacetime domain U ⊂ M
gauge perts. are those generating diffeomorphisms fixing ∂U ,

gab 7→ gab + hX
ab with hX

ab = ∇(aXb) and X = X(jg(x)).

It is a fact that hX
ab

ΩL7−→ jφ∗dvFX is a pure divergence (field eq.).

Then the corresp. obs. are holographic (i.e. bdary obs. [1])

fΣ[g] =
∫

Σ
jφ∗FX =

∫
∂Σ

jφ∗F̃X + const.
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Holographic gravitational observables on localized domains

Anderson and Torre proved that the only vector fields in SolsGR
U

hab = hab(jg(x)) = hab(x, g, ∂xg, . . . ) depending on an arbitrary,
but finite, number of partial derivatives of the metric are [3]

hab = hX
ab + c gab.

It would seem that (apart from rescaling gens.)
all vector fields in SolsGR

U are gauge or would be gauge.
( 6↔ free initial data sets for GR.)

In our context, a corollary of Torre [4] says that
all gravitational observables (dep. on fin. many p. ders. of g)
obtained integrating currents are holographic.
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Thank you for your attention!
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Solutions mod gauge on glued spacetime regions

It can be shown that gauge perturbations form a Lie subalgebra of
evolutionary vector fields.
The Lie algebra of gauge perturbations in a given domain and
some of its subalgebras are relevant below.
In the space of solutions these Lie algebras induce flows.

The “space of solutions modulo gauge” (Sols/G)U
is constructed in two steps from (Sols/G)U1 , (Sols/G)U2 :

1) Consider “the diagonal” of the cartesian product obtained by
imposing the Σ-gluing field equation, (Sols/G)U1#Σ(Sols/G)U2 .

2) Take a quotient by the group generated by the neglected gauge
perturbations, GΣ = GU/(GU1#ΣGU2).
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Gluing observable current algebras of adjacent domains
Now consider a domain that is composed by two subdomains that
intersect along a hypersurface U = U1#ΣU2. There are maps
OCU → OCUi ; additionally, the following definition shows how to
glue compatible observable currents of the subdomains to produce
any observable current in OCU .

Definition (Gluing algebras of adjacent domains)

I OCU1#ΣOCU2 = {(F1,F2) : Fi ∈ OCUi with F1|Σ = F2|Σ}.
I InvGΣ(·) denotes those OCs in · whose Lie derivative along

Σ-gauge perturbations vanish.

Proposition

OCU = InvGΣ(OCU1#ΣOCU2) .
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