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Classical theory

We consider the linear theory of a massive real Klein-Gordon field in a 4d
Lorentzian spacetime ds* = g,y dxtdx”.

The action of field in a spacetime region M is
1
Susldl=3 | dxvg(e"agas -+ Erg)

where the integration is extended over the sapcetime region M; g is
determinant of the metric g, and we used the notation J, = J /Ix*.
Assumptions:

> The spacetime region M is foliated by hypersurfaces, nor necessarily
spacelike, described by coordinates (7,x). The coordinates on the
leaves of the foliation are denoted by x = (x!,x%,x*) € C R? and the
leaves are parametrized by the coordinate v € ] C R. Notice that 7
and x are not required to be timelike and spacelike coordinates
respectively.



» The metric takes a block-diagonal form with respect to the
coordinates (7,x), i.e. ¢ =0=g"" forall i € {1,2,3}.

> The Euler-Lagrangian equations are solved by separation of variables:
Let X, and X, be the two independent solutions of the T—part of the
e.o.m.

(%) jdk (2)Y,40) + Ay X, (7)Y, )
XY )6+ (50, (),

where now X, , are understood as operators from the space of initial
data Y, , to solution on Y. We assume that X, , commute with each
other and are invertible.

The most studied quantum field theories on curved spaces are encompassed
by these assumptions.



Slice region

-

Slice region M bounded by the di- — 9

sjoint union of two constant-7 hyper- T2

surfaces, 2, = {(7,x) : 7 = 7,} and

Y, ={(r,x) : T = 7,}, namely M =

[T, 7] % R’. g j— N
x

The solution of the KG equation can be expressed in terms of ¢, and ¢,.

e A(r,1,) > . <A(’L’1,T) > N
¢( & <A(71’Tz)g01 @+ A("'l’fz)% ©,

where A7y, 7,) 1= X, (7)) X,(7,) = X, (1) X, (7))

All the deltas must be understood as operators acting on the boundary field
configurations ¢, and ¢,. We assume that these operators are invertible.



The free action in terms of the boundary field configuration is

S [7y,75], g)l’ ¢2 f d x 1 ['rl,’rz] <g;> ’
where the V(/'[T1 ] is a 2 X 2 matrix with elements WEi’/) P (1,7 = 1,2), given
> T
by
ATy, T AT, T
with —_ |g(3)g”| (7 2), WD —_ |g(3)g”| A(7 1)’
[r17] 1o A(Tl’TZ> [t172] 1o A(Tlﬁfz)
V(/(2,1) _ | 3) n| A1(Tzafz) W(z,z) _ | 3) TT| Az(TpTz)
[757] 207 A(Tl,T2> ’ [t17] 297 A(Tl’TZ) ’
where

Aj(ry,7y) = QTA(T: 7'2)|T:T1 Ay(ty, 7)) = QTA(’%T)L:T



A symmetry of the classical solution and the action

Both the classical solution (satisfying the boundary conditions) and the
action are invariant under the transformation

XaqﬁXm qulg_lxb’

with B €R\ {0}.



Region with one boundary hypersurface

Region M bounded one constant-t hypersurface, 2, = {(7,x) : T = 7, }.
The classical solution satisfying the boundary condition ¢|TO =gis

b(r.0)= <X(T) qo) @,

X(7o)

written as

where X(7) =aX (1) + bX)(7).
The free action is

3.X(7)|

1 X(7)|,
Seyo(@)= 3 j oy 8e I e



Schrodinger-Feynman quantization: state space

According to the axioms of the GBF, to each hypersurface X (oriented
manifold of dim 7 — 1) is associated a state space H3..

» For the KG field in the Schrodinger representation 5, is the space of
functions on field configurations Ky, on X.

» Inner product,

<¢2|¢1>=j D9 10V 9P,

Ks;



Schrodinger-Feynman quantization: amplitude map

To each region M (oriented manifold of dim 7) is associated an amplitude
map o,y : Aoy —C

» Amplitude for a state ) € 7,
onh)=| 20 40)2,(0)
Kan
where Z,, is the field propagator given by the Feynman path integral,
ZM(?’):J D$ D, Vo eKyyy.
KipPlou=¢

The integral is over the space K, of space-time field configurations ¢
in the interior of # which agree with ¢ on the boundary JM.



Schrodinger-Feynman quantization: observable map

To each observable F defined in the region M is associated an observable
map /oﬁ/] 1565, —C

» A classical observable F in M is modelled as a function on K. The
quantization of F is the linear map o/ : #), — C defined as

o ()= f D0 $(0)Z. ()

where

7' (g) = L TS,



Field propagator in the two regions

The field propagator in the region M can be evaluated by shifting the
integration variable by a classical solution matching the boundary field
configurations ¢|,, = ¢,

Z,(9) =Ny, Su(#)

where N, is a normalisation factor.
In the two regions considered, the field propagator satisfies the
composition rule

Z [T1,75], (901’§03) JQQDZZ [t1,75], (gol’ 902)2 [15,75], (§02’ 903)

Z[Tl],O(gol) = f @% Z[TO],O(ggO)Z [os71 ] (gDO’ 471)

and the identity

f@%Zflfz (?1’992)Zflfz oG 92) = 3(‘P1’951)s

where ¢, and ¢, are field configurations on X;. The above identity can be
interpreted in terms of the unitarity of the evolution implemented by the
field propagator.



Vacuum state

The vacuum wave functional has the form of a Gaussian,

a (Y(r
rolp zeXp< f &x o(x) <—i\/§2| ";(i)))sf)) (&)>,

where g}. is the determinant of the 3-metric on ¥, J, = /|g5"| 7. is the

normal derivative to 2 and
T<T) = CaXa<T) + CbXb<T)’

where c, ), are complex numbers s.t. ¢ ¢, — ¢, # 0. This condition
guarantees that the vacuum state is normalizable. Notice that this
condition is left invariant by the S tranformation. However the vacuum
state 1s not:

N 1 o)
¢2,0(¢)—C26Xp< zfd3w(z)< 1\/@—%(7) o)),

Wlth T,B =cC ﬂX +Cbﬁ_1Xb(T)
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B vacua

How to fix the value of 3?

» Symmetries of spacetime
» For Minkowski and Rindler, [ is fixed to 1 (and ¢, and ¢, are also fixed)
» For dS, all the ,6 vacua are de Sitter invariant (Chernikov-Tagirov,
Schomblond-Spindel, Allen, Mottola,...)
» Minkowski limit
» For dS, only the 8 =1 vacuum reduces to the standard Minkowski
vacuum (Bunch-Davies or Euclidean vacuum)
» Expectation value of the energy-momentum tensor
» For Minkowski and Rindler, £ is fixed to 1 (and ¢, and ¢, are also fixed)
» For dS, to be done
» Wick rotation
The vacuum state can be obtained as a limit of the Wick rotated field
propagator defined in the slice region (Minkowski, Rindler, dS):
li_l’)l’loo [7,iT,] (%> Ps) ¢2,o(§91)-

T

For dS this reduces to the Bunch-Davies vacuum.



Interacting theory

Consider the interaction of the scalar field with a real source field u
described by the action

Sun($)=Suo @)+ D), D(g)= jMd‘*x =2 () ().

We assume that the field y is confined in the interior of the region M, i.e.
wu(x)=0forxe dMand x ¢ M.
The amplitude for a coherent state ¢ € 7, factorizes as

P be) = pao(e) D) o1 [ dixd' o/gx)g) lx) Gre') )

where the function ¢ is complex solution of the KG equation and G is the
Feynman propagator satisfying the inhomogeneous Klein-Gordon
equation in both variables x and x

(O+m*) Gplo ) = (=) 2 8% (e =),



> Slice region:

~ 1 —
o W[(Tlf)rz}@cb =0 c)A(T,T,) «Tﬁ(f)gl) () + (Tﬁ(f)é) (’—C)>’
and
1 e —
x, )= | &k T x T x
GF( ) J K W(l’z) A(Tl, Tz)(c_ﬂ% _qcﬂ) (Tﬁ( <>§D@> (_) (Tﬁ( >)§9@>(_)

[r1,72]

» Region with one boundary hypersurface:

R X(t
E(x)= - <<>g>@

W (c,c,—¢yc,) \ac,—bg,

and

A 3 1 X(T<) /
Grliwx') = f P < b m) (@) (Ta(2)p) @)



General interaction

Consider the general interacting theory

Sy = Suo( )+ J & V(x, $(x))

M

where V is an arbitrary potential that vanishes outside the region M. The
corresponding field propagator is

S
Zy,v(p) = exp <i jM d'xy/—g(x)V <x —im» Zigu(9)

and the amplitude for the general interacting theory is

S
PM,V(¢) = exp <iJMd4x vV —g(x)V <x, —im>> PM,;;(SA)

b

u=0

©=0
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Commutation relations, Wightman function, Feynman
propagator in standard QFT

Commutators in Minkowski-QFT: (5=c=1)

[$0e, ) 1] = [Ad(x,0). B D] =0, [plx.0), AP 1)] =18 (x—')

Wightman function and Feynman propagator:

{0l (x)p(x)]0) = iD* (x —x'),
(01T h(x)p()|0) = iGp(x —x) =i [(t =)D (x —x') + 6 — ODH(x' —x)]



in-in formalism (CTP)

t
Free vacuum state ¢, evolves in- — 7
dependently under two source J© b
and J~; sum over all states at ¢,. Jas I
This is know as the close time
path or in-in formalism. g ~ 4,
x

ZtJ = f D (hole™ TE5I" W)y (] ST P )
_ : edt (TG T (x —Gp(x,x')  D¥(x,x)\ (JT(x)
_exp< 2 Jd xd X ( ( ) ] ( )) <D+(x,x’) GD(x,x’)> <]_(x/)>>

Gy, G, and D' can be obtain by functional derivatives of Z[J*,] ]



in-in formalism in the GBF

The interaction of the scalar field with the source J* is described by the

action
SM<¢>=SM,O<¢>+jM d'x /g0 5 () ()

We assume that J* are confined in the interior of the region M.

-
We consider the vacuum state ¢ at T —¢,
71 and a coherent states ¢, at 7, (co-
. + g
herent states satisfy a completeness J J
relation: K [ dndy|¢, ) (¢, |=1). T J
< Yo

The functional Z[J*,/~] in the slice region results to be

Z[rtJ 1= jdﬂdﬂpj__ <¢10®¢72r]>10] <¢71 ®¢T27)>



in-in formalism in the GBF

The interaction of the scalar field with the source J* is described by the

action
SM<¢>=SM,O<¢>+jM d'x /g0 5 () ()

We assume that J* are confined in the interior of the region M.

-
We consider the vacuum state ¢ at T —¢,
71 and a coherent states ¢, at 7, (co-
. + g
herent states satisfy a completeness J J
relation: K [ dndy|¢, ) (¢, |=1). T J
< Yo

The functional Z[J*,/~] in the slice region results to be
200 1=K [ rdiel) ) (4587,) oy (Fro® )

ool 3 feretr () 2 (09)



» G is the same Feynman propagator previously shown.

» the Wightman function is

) f &k (Ya(r)ge) (2) (T(x' ) )
)(c, ¢, —¢pc, )

It reduces to the standard Wightman function in the standard setting.



Commutation relations

» In standard Minkowski-QFT, equal-time commutation relations can
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Commutation relations

» In standard Minkowski-QFT, equal-time commutation relations can
be obtained by a limiting procedure

(Ol[(x,2), G p(x',1)]]0) =18 (x — x')
= 11_{% T [¢(x3 L+ 5)‘2¢(x/’ L= 6) - ¢(x’ L= G)atgﬁ(x/, L+ 6):|

» In the GBF, we have

(0ll¢(x,7), 2. $(x', 7)][0)
. S S 8 S
=lim [(71_5 SJ(x, v +€) 8J(x, 7 —¢) e 3J(x, T +¢€) 3](XI:T—EJ p,” =] <¢O®¢O>



Commutation relations

» In standard Minkowski-QFT, equal-time commutation relations can
be obtained by a limiting procedure

(Ol[(x,2), G p(x',1)]]0) =18 (x — x')
= 11_{% T [¢(x3 L+ f)at¢(x/’ L= 6) - ¢(x’ L= G)atgﬁ(x/, L+ 6)]

» In the GBF, we have

(Ol[p(x, 1), 2. (', 7)]1[0)

=lim|d _, 0 0 —d._, 0 0
0 SJ(x,t+¢€) S, T —e) SJ(x,t+¢€) SJ(x, T —e)
:ilim [0_ Grlx,t+ex ;1 —€)— 0., Grlx, T — &5x', T+ ¢)]

|l (9027)

J Pkl [(2T(s = ) T4 - X(e = ) (2T 70) | e

)(C, cp—Cpc, ) -0

Sx—x)

B

g gz"



Non-standard commutation relations in Minkowski

Region bounded by two hyper cylinders: The bounda- m:

ry is the disjoint union of timelike hypersurfaces. N
Propagation in the radial direction e
Solution of the Klein-Gordon equation:

H(t,7,Q) = f dEﬁ > (a,}m(E)TI(E, e Y Q)+ c.c.) , ¢
l,m

where Y are spherical harmonics and p = 4/|E* —m?|

and

Y(E, ) = 7,(pr) + imy(pr) E? > m? /
e i (ipr) —iln (ipr)  E?<m?

[é(t,7,),0.6F,r,Y)] = iza(t — )8 -
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