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Classical theory

We consider the linear theory of a massive real Klein-Gordon field in a 4d
Lorentzian spacetime ds2 = gµνdxµdxν .

The action of field in a spacetime region M is

SM,0[φ] =
1

2

∫

M
d4x
p

−g
�

gµν∂µφ∂νφ− (m
2+ ξR)φ2

�

where the integration is extended over the sapcetime region M; g is
determinant of the metric gµν and we used the notation ∂µ = ∂ /∂ xµ.
Assumptions:
É The spacetime region M is foliated by hypersurfaces, not necessarily

spacelike, described by coordinates (τ,x). The coordinates on the
leaves of the foliation are denoted by x= (x1,x2,x3) ∈ I ⊂R3 and the
leaves are parametrized by the coordinate τ ∈ J ⊂R. Notice that τ
and x are not required to be timelike and spacelike coordinates
respectively.



É The metric takes a block-diagonal form with respect to the
coordinates (τ,x), i.e. gτxi = 0= gxiτ for all i ∈ {1,2,3}.

É The Euler-Lagrangian equations are solved by separation of variables:
Let Xa and Xb be the two independent solutions of the τ−part of the
e.o.m.

φ(τ,x) =
∫

dk
�

da(k)Xa,k(τ)Ya,k(x)+ db(k)Xb,k(τ)Yb,k(x)
�

,

= (Xa(τ)Ya) (x)+ (Xb(τ)Yb) (x),

where now Xa,b are understood as operators from the space of initial
data Ya,b to solution on Στ . We assume that Xa,b commute with each
other and are invertible.

The most studied quantum field theories on curved spaces are encompassed
by these assumptions.



Slice region

Slice region M bounded by the di-
sjoint union of two constant-τ hyper-
surfaces, Σ1 = {(τ,x) : τ = τ1} and
Σ2 = {(τ,x) : τ = τ2}, namely M =
[τ1,τ2]×R3.

x

τ

τ1

τ2

ϕ1

ϕ2

The solution of the KG equation can be expressed in terms of ϕ1 and ϕ2.

φ(τ,x) =
�

∆(τ,τ2)

∆(τ1,τ2)
ϕ1

�

(x)+
�

∆(τ1,τ)

∆(τ1,τ2)
ϕ2

�

(x),

where∆(τ1,τ2) :=Xa(τ1)Xb(τ2)−Xa(τ2)Xb(τ1).

All the deltas must be understood as operators acting on the boundary field
configurations ϕ1 and ϕ2. We assume that these operators are invertible.



The free action in terms of the boundary field configuration is

S[τ1,τ2],0
(ϕ1,ϕ2) =

1

2

∫

d3x
�

ϕ1 ϕ2
�

W[τ1,τ2]

�

ϕ1
ϕ2

�

,

where the W[τ1,τ2]
is a 2× 2 matrix with elements W (i,j)

[τ1,τ2]
, (i, j = 1,2), given

by

W (1,1)
[τ1,τ2]

=−
q

|g(3)
τ1

gττ
τ1
|
∆1(τ1,τ2)

∆(τ1,τ2)
, W (1,2)

[τ1,τ2]
=−

q

|g(3)
τ1

gττ
τ1
|
∆2(τ1,τ1)

∆(τ1,τ2)
,

W (2,1)
[τ1,τ2]

=
q

|g(3)
τ2

gττ
τ2
|
∆1(τ2,τ2)

∆(τ1,τ2)
, W (2,2)

[τ1,τ2]
=
q

|g(3)
τ2

gττ
τ2
|
∆2(τ1,τ2)

∆(τ1,τ2)
,

where

∆1(τ1,τ2) := ∂τ∆(τ,τ2)
�

�

τ=τ1
∆2(τ1,τ2) := ∂τ∆(τ1,τ)

�

�

τ=τ2
.



A symmetry of the classical solution and the action

Both the classical solution (satisfying the boundary conditions) and the
action are invariant under the transformation

Xa→βXa, Xb→β−1Xb,

with β ∈R \ {0}.



Region with one boundary hypersurface

Region M bounded one constant-τ hypersurface, Σ0 = {(τ,x) : τ = τ0}.

The classical solution satisfying the boundary condition φ
�

�

τ0
= ϕ is

written as

φ(τ,x) =
�

X(τ)

X(τ0)
ϕ

�

(x),

where X(τ) = aXa(τ)+ bXb(τ).

The free action is

Sτ0,0(ϕ) =
1

2

∫

d3xϕ(x)
q

|g(3)
τ0

gττ
τ0
|
∂τX(τ)

�

�

τ0

X(τ0)
ϕ(x)



Schrödinger-Feynman quantization: state space

According to the axioms of the GBF, to each hypersurface Σ (oriented
manifold of dim n− 1) is associated a state spaceHΣ.

É For the KG field in the Schrödinger representationHΣ is the space of
functions on field configurations KΣ on Σ.

É Inner product,

〈ψ2|ψ1〉=
∫

KΣ

Dϕψ1(ϕ)ψ2(ϕ).



Schrödinger-Feynman quantization: amplitude map

To each region M (oriented manifold of dim n) is associated an amplitude
map ρM :H∂ M →C

É Amplitude for a state ψ ∈H∂ M ,

ρM (ψ) =
∫

K∂ M

Dϕψ(ϕ)ZM (ϕ),

where ZM is the field propagator given by the Feynman path integral,

ZM (ϕ) =
∫

KM ,φ|∂ M=ϕ
Dφ eiSM (φ), ∀ϕ ∈K∂ M .

The integral is over the space KM of space-time field configurations φ
in the interior of M which agree with ϕ on the boundary ∂ M.



Schrödinger-Feynman quantization: observable map

To each observable F defined in the region M is associated an observable
map ρF

M :H∂ M →C
É A classical observable F in M is modelled as a function on KM . The

quantization of F is the linear map ρF
M :H∂ M →C defined as

ρF
M (ψ) =

∫

K∂ M

Dϕψ(ϕ)ZF
M (ϕ),

where

ZF
M (ϕ) =

∫

KM ,φ|∂ M=ϕ
DφF(φ)eiSM (φ).



Field propagator in the two regions
The field propagator in the region M can be evaluated by shifting the
integration variable by a classical solution matching the boundary field
configurations φ

�

�

∂ M = ϕ,

ZM (ϕ) =NM eiSM (ϕ).

where NM is a normalisation factor.
In the two regions considered, the field propagator satisfies the
composition rule

Z[τ1,τ3],0
(ϕ1,ϕ3) =

∫

Dϕ2 Z[τ1,τ2],0
(ϕ1,ϕ2)Z[τ2,τ3],0

(ϕ2,ϕ3)

Z[τ1],0
(ϕ1) =

∫

Dϕ0 Z[τ0],0
(ϕ0)Z[τ0,τ1],0

(ϕ0,ϕ1)

and the identity
∫

Dϕ2 Z[τ1,τ2],0
(ϕ1,ϕ2)Z[τ1,τ2],0

(ϕ̃1,ϕ2) = δ
�

ϕ1, ϕ̃1
�

,

where ϕ1 and ϕ̃1 are field configurations on Σ1. The above identity can be
interpreted in terms of the unitarity of the evolution implemented by the
field propagator.



Vacuum state
The vacuum wave functional has the form of a Gaussian,

ψΣ,0(ϕ) =CΣ exp

�

−
1

2

∫

d3x ϕ(x)
�

−i
q

|g3
Σ
|
∂n(Υ (τ))

Υ (τ)
ϕ

�

(x)
�

,

where g3
Σ

is the determinant of the 3-metric on Σ, ∂n =
Æ

|gττ
Σ
|∂τ is the

normal derivative to Σ and

Υ (τ) := caXa(τ)+ cbXb(τ),

where ca,b are complex numbers s.t. cacb− cbca 6= 0. This condition
guarantees that the vacuum state is normalizable. Notice that this
condition is left invariant by the β tranformation. However the vacuum
state is not:

ψβ
Σ,0(ϕ) =CΣ exp

 

−
1

2

∫

d3x ϕ(x)

 

−i
q

|g3
Σ
|
∂n(Υβ(τ))

Υβ(τ)
ϕ

!

(x)

!

,

with Υβ(τ) := caβXa(τ)+ cbβ
−1Xb(τ).



β vacua
How to fix the value of β?

É Symmetries of spacetime
É For Minkowski and Rindler, β is fixed to 1 (and ca and cb are also fixed)
É For dS, all the β vacua are de Sitter invariant (Chernikov-Tagirov,

Schomblond-Spindel, Allen, Mottola,...)

É Minkowski limit
É For dS, only the β= 1 vacuum reduces to the standard Minkowski

vacuum (Bunch-Davies or Euclidean vacuum)
É Expectation value of the energy-momentum tensor

É For Minkowski and Rindler, β is fixed to 1 (and ca and cb are also fixed)
É For dS, to be done

É Wick rotation
The vacuum state can be obtained as a limit of the Wick rotated field
propagator defined in the slice region (Minkowski, Rindler, dS):

lim
τ2→∞

Z[τ1,iτ2]
(ϕ1,ϕ2)'ψΣ,0(ϕ1).

For dS this reduces to the Bunch-Davies vacuum.
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Interacting theory
Consider the interaction of the scalar field with a real source field µ
described by the action

SM,µ(φ) = SM,0(φ)+D(φ), D(φ) =
∫

M
d4x
Æ

−g(x)µ(x)φ(x).

We assume that the field µ is confined in the interior of the region M, i.e.
µ(x) = 0 for x ∈ ∂ M and x /∈M.
The amplitude for a coherent state ψξ ∈H∂ M factorizes as

ρM,µ(ψξ ) = ρM,0(ψξ ) eiD(ξ̂ ) e
i
2

∫

d4xd4x′
p

g(x)g(x′)µ(x)GF (x,x′)µ(x′)

where the function ξ̂ is complex solution of the KG equation and GF is the
Feynman propagator satisfying the inhomogeneous Klein-Gordon
equation in both variables x and x′

�

�+m2
�

GF (x,x′) = (−g(x))−1/2δ4(x− x′).



É Slice region:

ξ̂ (x) =
1

W (1,2)
[τ1 ,τ2]

(ca cb − cb ca)∆(τ1,τ2)

��

Υβ(τ)ξ1

�

(x)+
�

Υβ(τ)ξ2

�

(x)
�

,

and

GF (x,x′) =
∫

d3k
1

W (1,2)
[τ1 ,τ2]

∆(τ1,τ2)(ca cb − cb ca)

�

Υβ(τ<)ϕk

�

(x)
�

Υβ(τ>)ϕk

�

(x′)

É Region with one boundary hypersurface:

ξ̂ (x) =−
1

W (ca cb − cb ca)

�

X(τ)

aca− b cb

ξ

�

(x)

and

GF (x,x′) =
∫

d3k
1

W (ca cb − cb ca)

�

X(τ<)

aca− b cb

ϕk

�

(x)
�

Υβ(τ>)ϕk

�

(x′)



General interaction

Consider the general interacting theory

SM,V (φ) = SM,0(φ)+
∫

M
d4xV (x,φ(x)).

where V is an arbitrary potential that vanishes outside the region M. The
corresponding field propagator is

ZM,V (ϕ) = exp

�

i
∫

M
d4x
Æ

−g(x)V
�

x,−i
δ

δµ(x)

��

ZM,µ(ϕ)

�

�

�

�

�

µ=0

,

and the amplitude for the general interacting theory is

ρM,V (ψ) = exp

�

i
∫

M
d4x
Æ

−g(x)V
�

x,−i
δ

δµ(x)

��

ρM,µ(ψ)

�

�

�

�

�

µ=0

.
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Commutation relations, Wightman function, Feynman
propagator in standard QFT

Commutators in Minkowski-QFT: (ħh= c= 1)

[φ(x, t),φ(x′, t)] = [∂tφ(x, t),∂tφ(x
′, t)] = 0, [φ(x, t),∂tφ(x

′, t)] = iδ(x−x′)

Wightman function and Feynman propagator:

〈0|φ(x)φ(x′)|0〉= iD+(x− x′),

〈0|Tφ(x)φ(x′)|0〉= iGF (x− x′) = i
�

θ(t− t′)D+(x− x′)+θ(t′− t)D+(x′− x)
�



in-in formalism (CTP)

Free vacuum state ψ0 evolves in-
dependently under two source J+

and J−; sum over all states at t2.
This is know as the close time
path or in-in formalism.

x

t

t1

t2

J+ J−

ψ0

η

Z[J+, J−] =
∫

Dη 〈ψ0|e
−i
∫

d4x J−(x)φ(x)|η〉 〈η|ei
∫

d4x J+(x)φ(x)|ψ0〉

= exp

�

−i

2

∫

d4xd4x′
�

J+(x) J−(x)
�

�

−GF (x,x′) D+(x,x′)
D+(x,x′) GD(x,x′)

��

J+(x′)
J−(x′)

�

�

GF ,GD and D+ can be obtain by functional derivatives of Z[J+, J−]



in-in formalism in the GBF
The interaction of the scalar field with the source J± is described by the
action

SM (φ) = SM,0(φ)+
∫

M
d4x
Æ

−g(x) J±(x)φ(x).

We assume that J± are confined in the interior of the region M.

We consider the vacuum state ψ0 at
τ1 and a coherent states ψη at τ2 (co-
herent states satisfy a completeness
relation: K

∫

dηdη|ψη〉〈ψη|= I).

x

τ

τ1

τ2

J+ J−

ψ0

ψη

The functional Z[J+, J−] in the slice region results to be

Z[J+, J−] =K
∫

dηdη ρJ+

[τ1 ,τ2]

�

ψτ1 ,0⊗ψτ2 ,η

�

ρJ−

[τ1 ,τ2]

�

ψτ1 ,0⊗ψτ2 ,η

�

= exp

�

−i

2

∫

d4xd4x′
�

J+(x) J−(x)
�

�

−GF (x,x′) D+(x,x′)
D+(x,x′) GD(x,x′)

��

J+(x′)
J−(x′)

�
�
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x

τ

τ1

τ2

J+ J−

ψ0

ψη

The functional Z[J+, J−] in the slice region results to be

Z[J+, J−] =K
∫

dηdη ρJ+

[τ1 ,τ2]

�

ψτ1 ,0⊗ψτ2 ,η

�

ρJ−

[τ1 ,τ2]

�

ψτ1 ,0⊗ψτ2 ,η

�

= exp

�

−i

2

∫

d4xd4x′
�

J+(x) J−(x)
�

�

−GF (x,x′) D+(x,x′)
D+(x,x′) GD(x,x′)

��

J+(x′)
J−(x′)

�
�



É GF is the same Feynman propagator previously shown.
É the Wightman function is

D+(x,x′) = i
∫

d3k
1

d(k)(ca cb− cb ca)

�

Υβ(τ)ϕk

�

(x)
�

Υβ(τ
′)ϕk

�

(x′)

It reduces to the standard Wightman function in the standard setting.



Commutation relations

É In standard Minkowski-QFT, equal-time commutation relations can
be obtained by a limiting procedure

〈0|[φ(x, t),∂tφ(x
′, t)]|0〉= iδ(x− x′)

= lim
ε→0

T
�

φ(x, t+ ε)∂tφ(x
′, t− ε)−φ(x, t− ε)∂tφ(x

′, t+ ε)
�

É In the GBF, we have

〈0|[φ(x,τ),∂τφ(x
′,τ)]|0〉

= lim
ε→0

�

∂τ−ε
δ

δJ(x,τ+ ε)

δ

δJ(x′,τ− ε)
− ∂τ−ε

δ

δJ(x,τ+ ε)

δ

δJ(x′,τ− ε)

�

ρJ
[τ1 ,τ2]

�

ψ0⊗ψ0

�

= i lim
ε→0

�

∂τ−εGF (x,τ+ ε;x′,τ− ε)− ∂τ+εGF (x,τ− ε;x′,τ+ ε)
�

=
∫

d3k
i

d(k)(ca cb − cb ca)
lim
ε→0

h

(∂τΥ (τ− ε)) Υ (τ+ ε)−Υ (τ− ε)
�

∂τΥ (τ+ ε)
�i

ϕk(x
′)ϕk(x)

=
i

q

|g(3)τ gτττ |
δ(x− x′)
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�

∂τ−ε
δ

δJ(x,τ+ ε)

δ

δJ(x′,τ− ε)
− ∂τ−ε

δ

δJ(x,τ+ ε)

δ

δJ(x′,τ− ε)

�

ρJ
[τ1 ,τ2]

�

ψ0⊗ψ0

�

= i lim
ε→0

�

∂τ−εGF (x,τ+ ε;x′,τ− ε)− ∂τ+εGF (x,τ− ε;x′,τ+ ε)
�

=
∫

d3k
i

d(k)(ca cb − cb ca)
lim
ε→0

h
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i
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�
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δ
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�
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�
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�
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�
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�
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∫

d3k
i

d(k)(ca cb − cb ca)
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ε→0

h

(∂τΥ (τ− ε)) Υ (τ+ ε)−Υ (τ− ε)
�

∂τΥ (τ+ ε)
�i

ϕk(x
′)ϕk(x)

=
i

q

|g(3)τ gτττ |
δ(x− x′)



Non-standard commutation relations in Minkowski

Region bounded by two hyper cylinders: The bounda-
ry is the disjoint union of timelike hypersurfaces.
Propagation in the radial direction
Solution of the Klein-Gordon equation:

φ(t, r,Ω) =
∫

dE
p

4π

∑

l,m

�

al,m(E)Υl(E, r) e−iEtY m
l (Ω)+ c.c.

�

,

where Y m
l are spherical harmonics and p =

Æ

|E2−m2|
and

Υl(E, r) =

(

jl(pr)+ inl(pr) E2 >m2

i−l jl(ipr)− ilnl(ipr) E2 <m2

t

x

�

φ(t, r,Ω),∂rφ(t
′, r,Ω′)

�

=
i

r2
δ(t− t′)δ (2)(Ω−Ω′)
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