
The Unruh effect in general boundary QFT

Daniele Colosi

ENES, Unidad Morelia, UNAM

Morelia, 13 June 2018



Contents

The Unruh effect

GBF and quantum field theory
Schrödinger-Feynman quantization
Holomorphic quantization
GBF in Minkowski and Rindler spacetimes

Unruh effect in the GBF
Global Unruh effect
Local Unruh effect

Conclusions



Unruh effect

The Unruh effect states that linearly uniformly accelerated observers
perceive the Minkowski vacuum state (i.e. the no-particle state of inertial
observers) as a mixed particle state described by a density matrix at

temperature T =
a

2πkB
, a being the constant acceleration of the observer.

Importance:
É Relation between the Minkowski vacuum and the notion of particle

in Rindler space (naturally associated with an accelerated observer): particle
content of a field theory is observer dependent

É Relation with the Hawking effect and cosmological horizons
É Possible experimental detection

Moreover:
É Perfect arena for the GBF
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É Operational interpretation: A uniformly accelerated Unruh-DeWitt
detector responds as if submersed in a thermal bath when interacting
with a quantum field in the Minkowski vacuum state.

É Particle interpretation: the vacuum state in Minkowski corresponds
to an entangled state between the modes of the field defined in the left
and right Rindler wedges.
É Crispino et al., The Unruh effect and its applications, Rev. Mod. Phys. 80

(2008), 787–838
«the Unruh effect is the equivalence between the Minkowski vacuum and a
thermal bath of Rindler particles»
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GBF and QFT

Standard QFT can be formulated within the GBF

2 quantization schemes have been studied, that transform a classical field
theory into a general boundary quantum field theory:
É Schrödinger-Feynman quantization
É holomorphic quantization
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Schrödinger-Feynman quantization
É Schrödinger representation + Feynman path integral quantization

The state spaceHΣ for a hypersurface Σ is the space of functions on
field configurations KΣ on Σ.

É Inner product,

〈ψ2|ψ1〉=
∫

KΣ

Dϕψ1(ϕ)ψ2(ϕ).

É Amplitude for a region M, ψ ∈H∂ M ,

ρM (ψ) =
∫

K∂ M

Dϕψ(ϕ)
∫

KM ,φ|∂ M=ϕ
Dφ eiSM (φ).

É A classical observable F in M is modeled as a function on KM . The
quantization of F is the linear map ρF

M :H∂ M →C defined as

ρF
M (ψ) =

∫

K∂ M

Dϕψ(ϕ)
∫

KM ,φ|∂ M=ϕ
DφF(φ)eiSM (φ).



Holomorphic quantization

É Linear field theory: LΣ is the vector space of solutions near the
hypersurface Σ.

É LΣ carries a non-degenerate symplectic structureωΣ and a complex
structure JΣ : LΣ→ LΣ compatible with the symplectic structure:

J2
Σ =−idΣ and ωΣ(JΣ(·), JΣ(·)) =ωΣ(·, ·).

É JΣ andωΣ combine to a real inner product gΣ(·, ·) = 2ωΣ(·, JΣ·) and to
a complex inner product {·, ·}Σ = gΣ(·, ·)+ 2iωΣ(·, ·) which makes LΣ
into a complex Hilbert space.

É The Hilbert spaceHΣ associated with Σ is the space of holomorphic
functions on LΣ with the inner product

〈ψ,ψ′〉Σ =
∫

LΣ

ψ(φ)ψ′(φ)exp
�

−
1

2
gΣ(φ,φ)

�

dµ(φ),

where µ is a (fictitious) translation-invariant measure on LΣ.



Holomorphic quantization (II)

É The amplitude map ρM :H∂ M →C associated with the spacetime
region M for a state ψ ∈H∂ M is given by

ρM (ψ) =
∫

LΣ

ψ(φ)exp
�

−
1

4
g∂ M (φ,φ)

�

dµM̃ (φ).

É The observable map associated to a classical observable F in a region
M is

ρF
M (ψ) =

∫

LΣ

ψ(φ)F(φ)exp
�

−
1

4
g∂ M (φ,φ)

�

dµM̃ (φ).



Klein-Gordon theory in Minkowski

É Action of a real massive Klein-Gordon field on 1+ 1-dimensional
Minkowski spacetime

S[φ] =
1

2

∫

d2x
�

ηµν∂µφ∂νφ−m2φ2
�

.

É The GBF is defined in a region M bounded by the disjoint union of
two spacelike hypersurfaces represented by two equal time
hyperplanes.

É It is convenient to expand the field in the basis of the boost modes

ψp(x, t) =
1

23/2π

∫ ∞

−∞
dq exp

�

im(x sinhq− t coshq)− ipq
�



Klein-Gordon theory in Minkowski

All the relevant structures can be defined and the Hilbert space
constructed.
É The complex structure results to be

JΣi
=

∂t
Æ

−∂ 2
t

É The vacuum state is the standard Minkowski vacuum state
É Amplitude and observable maps are implementable in terms of
ω(·, ·),g(·, ·) and {·, ·}



Klein-Gordon theory in Rindler space

É Rindler space is defined by ds2 = ρ2dη2− dρ2, where

t= ρ sinhη, x= ρ coshη

It corresponds to the right wedge of Minkowski space,
R := {x ∈M : x2 ≤ 0, x> 0}.

É We consider the region R⊂R bounded by the disjoint union of two
equal-Rindler-time hyperplanes.

É The field is expanded in the basis of the Fulling modes

φR
p (ρ,η) =

(sinh(pπ))1/2

π
Kip(mρ)e

−ipη, p> 0,

Kip is the modified Bessel function of the second kind (Macdonald
function).



Klein-Gordon theory in Rindler space

All the relevant structures can be defined and the Hilbert space
constructed.
É The complex structure results to be

JΣR
i
=

∂η
q

−∂ 2
η

É Amplitude and observable maps are implementable in terms of
ω(·, ·),g(·, ·) and {·, ·}



Boundary condition

In order for the quantum theory to be well defined the following
condition must be imposed

φR(ρ= 0,η) = 0

The relevance of this boundary condition manifests at the level of the
algebraic structures, e.g.

ω(R)Σ0
(φ,φ′) =ωΣR

0
(φR,φR′)

+ lim
ε→0

i
∫ ε

0
dp

cosh(pπ)

sinh(pπ)

h

φ(p)φ(p)′−φ(p)φ′(p)
i

,

where Σ0 hyperplane t= 0, ΣR
0 is the semi-hyperplane η= 0, ΣR

0 =Σ0 ∩R .

⇒ the two quantum theories, in Minkowski and in Rindler spaces, are
inequivalent
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Unruh effect

Two notions:

1. Global Unruh effect: Comparison of particle states in Minkowski
and Rindler spaces, e.g.
É Crispino et al.:

«The Unruh effect is defined in this review as the fact that the usual vacuum
state for QFT in Minkowski spacetime restricted to the right Rindler wegde
is a thermal state.»

É Jacobson, ”Introductory lectures on black hole thermodynamics”:
«The essence of the Unruh effect is the fact that the density matrix describing
the Minkowski vacuum, traced over the states in the region z< 0, is precisely
a Gibbs state for the boost Hamiltonian at a temperature T = 1/2π.»

2. Local Unruh effect: Comparison of expectation values of local
observables, namely observable with compact support both in
Minkowski and Rindler space.



Global Unruh effect

É Because of the inequivalence between the QFTs, no direct
identification of Minkowski quantum states with Rindler quantum
states is possible.

É There is no global Unruh effect!
É Same critique of the Russian school of Belinskii et al.



Local Unruh effect

É We consider the Weyl observable

F(φ) = exp
�

i
∫

d2xµ(x)φ(x)
�

,

µ(x) has compact support in the interior of the right wedgeR . F is a
well defined observable in both Minkowski and Rindler spaces.

É We compute the expectation value of F
1. on the Minkowski vacuum state

K0,Σ1
⊗K0,Σ2

,

where K0,Σi
is the Minkowski vacuum state inHΣi

, (i= 1,2), and
2. on the Rindler mixed state

D=
∏

i

(1− exp(−2πki))
∞
∑

ni=0

e−2πniki

(ni)!(2ki)
ni
ψni
⊗ψni

,

ψni
is the Rindler state with ni particles defined inHΣR

i
, (i= 1,2).



Local Unruh effect

Using the observable map we compute the two expectation values:

É Expectation value in Minkowski space

ρF
M (K0,Σ1

⊗K0,Σ2
) = exp

�

i

2

∫

d2xd2x′µ(x)GMF (x,x′)µ(x′)
�

,

where GMF (x,x′) is the Feynman propagator in Minkowski.

É Expectation value in Rindler space

ρF
R(D) =

∏

i

N2
i

∞
∑

ni=0

e−2πniki

(ni)!(2ki)
ni

N−2
∫

dξ1 dξ1 dξ2 dξ2ρ
F
R(Kξ1

⊗Kξ2
)

exp

�

−
1

2

∫ dk

2k
|ξ1(k)|

2
�

(ξ1(ki))
ni exp

�

−
1

2

∫ dk

2k
|ξ2(k)|

2
�

(ξ2(ki))
ni ,

where the n-particle states have been expanded in the basis of the
coherent states Kξi



Local Unruh effect

Using the observable map we compute the two expectation values:

É Expectation value in Minkowski space

ρF
M (K0,Σ1
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) = exp

�

i

2

∫

d2xd2x′µ(x)GMF (x,x′)µ(x′)
�

,

where GMF (x,x′) is the Feynman propagator in Minkowski.
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ρF
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∏

i

N2
i

∞
∑

ni=0

e−2πniki

(ni)!(2ki)
ni

N−2
∫

dξ1 dξ1 dξ2 dξ2ρ
F
R(Kξ1

⊗Kξ2
)

exp

�

−
1

2

∫ dk

2k
|ξ1(k)|

2
�

(ξ1(ki))
ni exp

�

−
1

2

∫ dk

2k
|ξ2(k)|

2
�

(ξ2(ki))
ni ,

where the n-particle states have been expanded in the basis of the
coherent states Kξi



Local Unruh effect

The result of the computation is

ρF
M (K0,Σ1

⊗K0,Σ2
) = ρF

R(D)

The local Unruh effect exists!

Consider a generic mixed state D̃ expanded in the basis of coherent states.
Imposing the equality of expectation values for the theories in Minkowski
and in Rindler fixes the coefficients of the state D̃, and the result is D̃=D.

the state D is unique.
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Regions with one boundary hypersurface

We consider other regions in Minkowski, [t1 =−∞, t2 = 0]×R, and in
Rindler, [η1 =−∞,η2 = 0]×R

F(φ)

x

t

t2

K0

F(φ)

x

t

η2

D̃

ρF
M (K0) 6= ρ
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R(D̃)

No local Unruh effect!
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Conclusions and outlook

Conclusions
É Successfull implementation of the GBF in Rindler space
É New perspective on the Unruh effect: the distinction of the notions

of global and local Unruh effect offers a clarification between
different positions on the Unruh effect.

É First application of the amplitude map and implementation of the
Berezin-Toeplitz quantization scheme (no Unruh effect within this
quantization scheme).

Outlook
É Construction of the GBF for more general spacetime regions (in

particular compact regions that avoide the origin of Minkowski
spacetime)

É Composition of hypersurfaces and corresponding algebraic structures
É Relation with the Hawking effect
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