The positive formalism: an operational approach to the foundations of physics

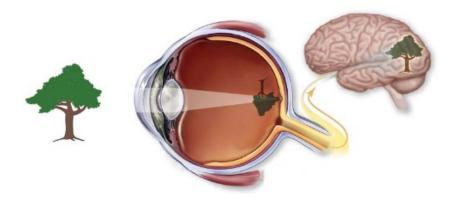
Robert Oeckl

Centro de Ciencias Matemáticas Universidad Nacional Autónoma de México Morelia, Mexico

Seminar General Boundary Formulation 7 February 2018

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ □

Vision and reconstruction



http://tpe.vision.aveugles.free.fr/vision.php

Robert Oeckl (CCM-UNAM)

<ロト < 四ト < 三ト < 三ト

Operational approach: Fundamental notions

- experiment
- measurement
- observation
- preparation
- intervention

Subsume instance as:

process

Processes have

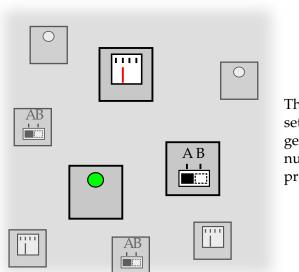
outcomes.

Represent processes as **boxes**.

<ロト < 四 > < 回 > < 回 > < 回 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Processes are not isolated. Outcomes depend on other processes. We want to predict **correlations**.

< ロト < 同ト < ヨト < ヨト



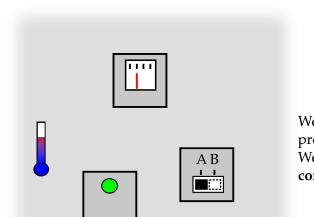
The outcome of a given set of processes depends generally on a large number of other processes.

• • = • • = •

Robert Oeckl (CCM-UNAM)

the positive formalism

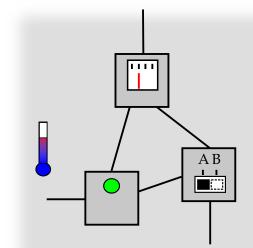
2018-02-07 5 / 26



We treat these external processes collectively. We call this a **boundary condition**.

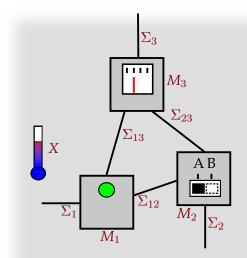
A B > A B

2018-02-07 6 / 26



We introduce the notion of **interface** to model interaction between processes. An interface encodes communication or information exchange between processes. we depict this as a **link**.

• • = • • =



Processes are of specific **types**. Interfaces are of specific **types**.

Types determine how processes and interfaces can be **connected**. Only matching types can be connected.

We indicate types with **labels**.

A B > A B

Processes and probes

Associated to each process of type *M* is a space \mathcal{P}_M of **probes** with a subset of **primitive probes** $\mathcal{P}_M^+ \subseteq \mathcal{P}_M$.

A **probe** provides a finer description of a process.

• • = • • = •

Processes and probes

Associated to each process of type *M* is a space \mathcal{P}_M of **probes** with a subset of **primitive probes** $\mathcal{P}_M^+ \subseteq \mathcal{P}_M$.

- A **probe** provides a finer description of a process. A **primitive probe** may specify,
 - the presence of an apparatus
 - specific apparatus settings
 - the occurrence (or not) of a specific experimental outcome
- A general **probe** may encode also
 - measurement values

• • = • • = •

Processes and probes

Associated to each process of type *M* is a space \mathcal{P}_M of **probes** with a subset of **primitive probes** $\mathcal{P}_M^+ \subseteq \mathcal{P}_M$.

A **probe** provides a finer description of a process. A **primitive probe** may specify,

- the presence of an apparatus
- specific apparatus settings
- the occurrence (or not) of a specific experimental outcome
- A general **probe** may encode also
 - measurement values

There is always a **null-probe** $\square \in \mathcal{P}_{M'}^+$ representing the absence of any apparatus, observation or intervention.

イロト イピト イヨト イヨ

Hierarchies of probes

Probes form hierarchies of generality. This induces a **partial order** on the space of probes \mathcal{P}_M .

< 3 > < 3 >

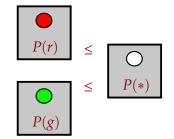
Hierarchies of probes

Probes form hierarchies of generality. This induces a **partial order** on the space of probes \mathcal{P}_M .

Consider an apparatus with one light that shows either red or green, encoded in three different probes:

- P(r) for outcome red
- P(g) for outcome green
- *P*(*) for an unspecified outcome

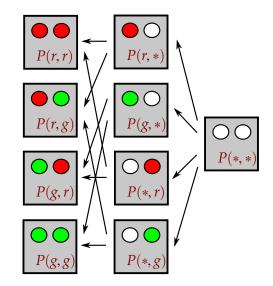
The unspecified state is more **general** than the others. Encode this in a **partial order** on $\mathcal{P}_{M'}$ setting $P(r) \leq P(*)$ and $P(g) \leq P(*)$.



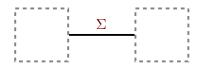
Hierarchies of probes

Hierarchies may become more complex when the apparatus allows for more distinct readings.

For example: $P(r, r) \le P(r, *) \le P(*, *).$

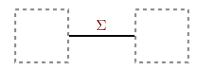


Interfaces and boundary conditions



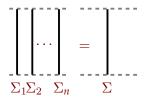
We associate to each interface Σ a space of **boundary conditions** \mathscr{B}^+_{Σ} . This parametrizes possible signals/information exchange between adjacent processes.

Interfaces and boundary conditions



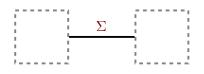
We associate to each interface Σ a space of **boundary conditions** \mathcal{B}_{Σ}^+ . This parametrizes possible signals/information exchange between adjacent processes.

Interfaces between the same pair of processes can be combined arbitrarily. Write: $\Sigma = \Sigma_1 \cup \Sigma_2 \cup \cdots \cup \Sigma_n$.



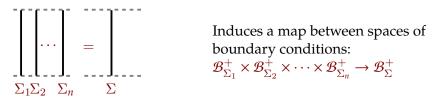
Induces a map between spaces of boundary conditions: $\mathcal{B}_{\Sigma_1}^+ \times \mathcal{B}_{\Sigma_2}^+ \times \cdots \times \mathcal{B}_{\Sigma_n}^+ \to \mathcal{B}_{\Sigma}^+$

Interfaces and boundary conditions



We associate to each interface Σ a space of **boundary conditions** \mathcal{B}_{Σ}^+ . This parametrizes possible signals/information exchange between adjacent processes.

Interfaces between the same pair of processes can be combined arbitrarily. Write: $\Sigma = \Sigma_1 \cup \Sigma_2 \cup \cdots \cup \Sigma_n$.



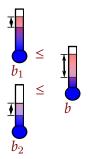
We denote the joint interface for a process of type *M* by ∂M .

Robert Oeckl (CCM-UNAM)

Hierarchies of boundary conditions

Boundary conditions also form **hierarchies of generality**. This gives rise to a **partial order** on \mathcal{B}_{Σ}^+ . Here:

 $b_1 \le b$ $b_2 \le b$

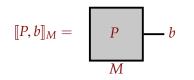


Robert Oeckl (CCM-UNAM)

2018-02-07 13 / 26

Values

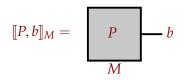
Consider a process of type *M*.



To a **probe** $P \in \mathcal{P}_M$ and a **boundary condition** $b \in \mathcal{B}^+_{\partial M}$ we associate a **value** $\llbracket P, b \rrbracket_M$. We shall take this to be a **real number**. Formally, there is a **pairing** $\llbracket \cdot, \cdot \rrbracket_M : \mathcal{P}_M \times \mathcal{B}^+_{\partial M} \to \mathbb{R}$.

Values

Consider a process of type *M*.



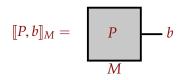
To a **probe** $P \in \mathcal{P}_M$ and a **boundary condition** $b \in \mathcal{B}^+_{\partial M}$ we associate a **value** $\llbracket P, b \rrbracket_M$. We shall take this to be a **real number**. Formally, there is a **pairing** $\llbracket \cdot, \cdot \rrbracket_M : \mathcal{P}_M \times \mathcal{B}^+_{\partial M} \to \mathbb{R}$.

 $\llbracket P, b \rrbracket_M \in \mathbb{R}^+$ quantifies **compatibility** between the apparatus or outcome represented by the **primitive probe** $P \in \mathcal{P}_M^+$ and the **boundary condition** $b \in \mathcal{B}_{\partial M}^+$.

イロト イポト イヨト イヨト

Values

Consider a process of type *M*.



To a **probe** $P \in \mathcal{P}_M$ and a **boundary condition** $b \in \mathcal{B}^+_{\partial M}$ we associate a **value** $\llbracket P, b \rrbracket_M$. We shall take this to be a **real number**. Formally, there is a **pairing** $\llbracket \cdot, \cdot \rrbracket_M : \mathcal{P}_M \times \mathcal{B}^+_{\partial M} \to \mathbb{R}$.

 $\llbracket P, b \rrbracket_M \in \mathbb{R}^+$ quantifies **compatibility** between the apparatus or outcome represented by the **primitive probe** $P \in \mathcal{P}_M^+$ and the **boundary condition** $b \in \mathcal{B}_{\partial M}^+$.

Pairing and partial order structures are compatible:

$$P \le Q \quad \Longleftrightarrow \quad [\![P,b]\!]_M \le [\![Q,b]\!]_M \quad \forall b \in \mathcal{B}_{\partial M}^+$$
$$b \le c \quad \Longleftrightarrow \quad [\![P,b]\!]_M \le [\![P,c]\!]_M \quad \forall P \in \mathcal{P}_M^+$$

• • = • • = •

From values to measurements

A measurement is encoded by at least two probes:

- One **non-selective probe** *Q* encodes the **measurement apparatus**.
- One **selective probe** *P* encodes the measurement apparatus with a selected outcome.

From values to measurements

A measurement is encoded by at least two probes:

- One **non-selective probe** *Q* encodes the **measurement apparatus**.
- One **selective probe** *P* encodes the measurement apparatus with a selected outcome.

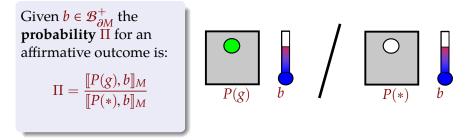
 $\llbracket Q, b \rrbracket_M \in \mathbb{R}^+$ quantifies **compatibility** of the **boundary condition** $b \in \mathcal{B}^+_{\partial M}$ with the presence of the **apparatus**.

 $\llbracket P, b \rrbracket_M \in \mathbb{R}^+$ quantifies **compatibility** of the **boundary condition** $b \in \mathcal{B}^+_{\partial M}$ with the presence of the apparatus with **selected outcome**.

イロト 不得 トイヨト イヨト 二日

Measurement probabilities

In *M* consider the probe $P(*) \in \mathcal{P}_M^+$ encoding a measurement device and P(g) encoding in addition a selected outcome.



Since $0 \le P(g) \le P(*)$ we have $0 \le \Pi \le 1$ (if $[P(*), b]_M \ne 0$).

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Expectation values

Say we have an apparatus in M represented by a primitive probe $Q \in \mathcal{P}_{M}^{+}$. The measurement may have n different outcome represented by primitive probes $P_{1}, \ldots, P_{n} \in \mathcal{P}_{M}^{+}$. We associate with each outcome a pointer reading $\lambda_{1}, \ldots, \lambda_{n} \in \mathbb{R}$. The **expectation value** E for the pointer reading is,

$$E = \sum_{i=1}^{n} \lambda_i \frac{\llbracket P_i, b \rrbracket_M}{\llbracket Q, b \rrbracket_M} = \frac{\llbracket P, b \rrbracket_M}{\llbracket Q, b \rrbracket_M}$$

where we define,

$$P = \sum_{i=1}^n \lambda_i P_i.$$

 $P \in \mathcal{P}_M$ is a general probe, not necessarily primitive.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

In a probabilistic setting it makes sense to combine different probes probabilistically, even when they correspond to different experimental situations. Say we have probes P_1, \ldots, P_n and probabilities p_1, \ldots, p_n such that $\sum_k p_k = 1$. Then we can consider $P := \sum_k p_k P_k$ as a probe.

In a probabilistic setting it makes sense to combine different probes probabilistically, even when they correspond to different experimental situations. Say we have probes P_1, \ldots, P_n and probabilities p_1, \ldots, p_n such that $\sum_k p_k = 1$. Then we can consider $P := \sum_k p_k P_k$ as a probe.

Since an arbitrary real multiple of a probe is a probe, this equips the space \mathcal{P}_M of probes with the structure of a **real vector space**. The subset of primitive probes $\mathcal{P}_M^+ \subset \mathcal{P}_M$ is a **positive cone** making \mathcal{P}_M into a **partially ordered vector space**.

In a probabilistic setting it makes sense to combine different probes probabilistically, even when they correspond to different experimental situations. Say we have probes P_1, \ldots, P_n and probabilities p_1, \ldots, p_n such that $\sum_k p_k = 1$. Then we can consider $P := \sum_k p_k P_k$ as a probe.

Since an arbitrary real multiple of a probe is a probe, this equips the space \mathcal{P}_M of probes with the structure of a **real vector space**. The subset of primitive probes $\mathcal{P}_M^+ \subset \mathcal{P}_M$ is a **positive cone** making \mathcal{P}_M into a **partially ordered vector space**.

Similarly, the set of boundary conditions \mathcal{B}_{Σ}^+ forms a **positive cone** in the **partially ordered vector space** \mathcal{B}_{Σ} generated by it. We call this the space of **generalized boundary conditions**.

In a probabilistic setting it makes sense to combine different probes probabilistically, even when they correspond to different experimental situations. Say we have probes P_1, \ldots, P_n and probabilities p_1, \ldots, p_n such that $\sum_k p_k = 1$. Then we can consider $P := \sum_k p_k P_k$ as a probe.

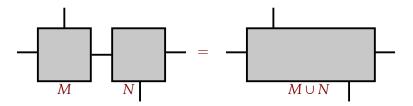
Since an arbitrary real multiple of a probe is a probe, this equips the space \mathcal{P}_M of probes with the structure of a **real vector space**. The subset of primitive probes $\mathcal{P}_M^+ \subset \mathcal{P}_M$ is a **positive cone** making \mathcal{P}_M into a **partially ordered vector space**.

Similarly, the set of boundary conditions \mathcal{B}_{Σ}^+ forms a **positive cone** in the **partially ordered vector space** \mathcal{B}_{Σ} generated by it. We call this the space of **generalized boundary conditions**.

We extend the pairing, $[\![\cdot, \cdot]\!]_M : \mathcal{P}_M \times \mathcal{B}_{\partial M} \to \mathbb{R}$

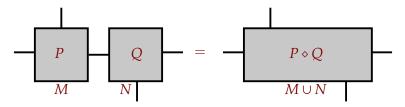
Composition

A set of processes joined by interfaces may be considered itself a process. Say we have a process of type *M* and one of type *N*. We say the **composite** process has type $M \cup N$.



Composition

A set of processes joined by interfaces may be considered itself a process. Say we have a process of type *M* and one of type *N*. We say the **composite** process has type $M \cup N$.



This induces a composition of associated probes $P \in \mathcal{P}_M$ with $Q \in \mathcal{P}_N$. We write for the composite probe $P \diamond Q \in \mathcal{P}_{M \cup N}$. This yields a **composition map** $\diamond : \mathcal{P}_M \times \mathcal{P}_N \to \mathcal{P}_{M \cup N}$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Slice processes and inner product

For any type Σ of **interface** we postulate a type of **slice process** $\hat{\Sigma}$: • $\partial \hat{\Sigma} = \Sigma \cup \Sigma$

• the null probe "passes signals through"

$$\begin{array}{c|c} \hline \Sigma \\ \hline \Sigma \\ \hline \Sigma \\ \hline \Sigma \\ \hline \end{array} \end{array} = \begin{array}{c} \hline \Sigma \\ \hline \Sigma \\ \hline \Sigma \\ \hline \end{array}$$

• • = • • = •

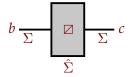
Slice processes and inner product

For any type Σ of **interface** we postulate a type of **slice process** $\hat{\Sigma}$: • $\partial \hat{\Sigma} = \Sigma \cup \Sigma$

• the null probe "passes signals through"

$$\sum_{\hat{\Sigma}} \Sigma = \sum_{\hat{\Sigma}}$$

Putting **boundary conditions** on the two sides allows evaluation. This yields an **inner product** $\mathcal{B}_{\Sigma} \times \mathcal{B}_{\Sigma} \to \mathbb{R}$ on the space of boundary conditions.



 $(\![b,c]\!]_{\Sigma} := [\![\Box,b\otimes c]\!]_{\hat{\Sigma}}$

This should be **symmetric** and **positive-definite**.

Robert Oeckl (CCM-UNAM)

the positive formalism

2018-02-07 20 / 26

Composition of slices

Two processes of the same slice type compose to one process of this slice type. Null probes then compose to a null probe.

A decomposition of the identity in terms of a **basis** yields a notion of **composition** of slice probes. For the null probe,

$$b - \boxed{\Box} - c = \sum_{k} b - \boxed{\Box} - \xi_{k} \quad \xi_{k} - \boxed{\Box} - c$$
$$\hat{\Sigma} \qquad \hat{\Sigma} \qquad \hat{\Sigma} \qquad \hat{\Sigma}$$
$$(b, c)_{\hat{\Sigma}} = \sum_{k \in I} (b, \xi_{k})_{\hat{\Sigma}} \quad (\xi_{k}, c)_{\hat{\Sigma}}$$

Here, $\{\xi_k\}_{k \in I}$ is an ON-basis of \mathcal{B}_{Σ} .

イロト イポト イヨト イヨト

Composition rule for probes

As a generalization we obtain the **composition rule for probes**.

$$b - \begin{bmatrix} P \diamond Q \\ M \cup N \end{bmatrix} c = \sum_{k} b - \begin{bmatrix} P \\ M \end{bmatrix} \xi_{k} \xi_{k} - \begin{bmatrix} Q \\ N \end{bmatrix} c$$
$$\begin{bmatrix} P \diamond Q, b \otimes c \end{bmatrix}_{M \cup N} = \sum_{k \in I} \llbracket P, b \otimes \xi_{k} \rrbracket_{M} \llbracket Q, \xi_{k} \otimes c \rrbracket_{N}$$

Here, $\{\xi_k\}_{k \in I}$ is an ON-basis of \mathcal{B}_{Σ} .

< ロ > < 同 > < 回 > < 回 > < 回 >

(Abstract) Positive Formalism

Obtain an **axiomatic framework** for encoding physical theories with:

• types

- a collection of process types
- a collections of interface types
- a **boundary map** from process types to interface types $M \mapsto \partial M$
- objects
 - a partially ordered vector space of **probes** \mathcal{P}_M per process type M
 - a partially ordered vector space of generalized boundary conditions B_Σ per interface type Σ

compositions

- **decomposition** of interface types $\Sigma = \Sigma_1 \cup \cdots \cup \Sigma_n$ with associated positive isomorphism $\mathcal{B}_{\Sigma_1} \otimes \cdots \otimes \mathcal{B}_{\Sigma_n} \to \mathcal{B}_{\Sigma}$
- **composition** of process types *M* and *N* to $M \cup N$ and probes $\diamond : \mathcal{P}_M \times \mathcal{P}_N \to \mathcal{P}_{M \cup N}$
- **values**: positive pairings $[\![\cdot, \cdot]\!]_M : \mathcal{P}_M \times \mathcal{B}_{\partial M} \to \mathbb{R}$

Partially ordered vector space

A real vector space *V* with a partial order such that:

•
$$a \le b \iff a + c \le b + c \quad \forall a, b, c \in V$$

• $a \le b \iff \lambda a \le \lambda b \quad \forall a, b \in V, \forall \lambda > 0$

Require **generating cone**, i.e., $V = V^+ - V^+$. Require **Archimedean** order, i.e., for any $v \in V$ have that if there exists $w \in V^+$ such that $v \leq \lambda w$ for all $\lambda > 0$ then $v \leq 0$.

Positive map

A linear map that maps positive elements to positive elements.

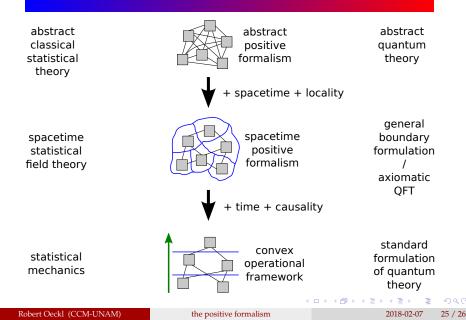
Sharply positive inner product

A symmetric bilinear form $V \times V \to \mathbb{R}$ such that if $a, b \in V^+$ then $(a, b) \ge 0$ and if for some $a \in V$ we have $(a, b) \ge 0$ for all $b \in V^+$ then $a \in V^+$.

(ロ)

classical (lattices)

quantum (anti-lattices)



R. O., A local and operational framework for the foundations of physics, arXiv:1610.09052.

• • = • • = •