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Vision and reconstruction

http://tpe.vision.aveugles.free.fr/vision.php
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Processes and interfaces

Operational approach:
Fundamental notions

experiment
measurement
observation
preparation
intervention

Subsume instance as:
process

Processes have
outcomes.
Represent processes as
boxes.
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Processes and interfaces

A B

Processes are not
isolated. Outcomes
depend on other
processes. We want to
predict correlations.
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Processes and interfaces

A B

AB

AB

The outcome of a given
set of processes depends
generally on a large
number of other
processes.
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Processes and interfaces

A B

We treat these external
processes collectively.
We call this a boundary
condition.
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Processes and interfaces

A B

We introduce the notion
of interface to model
interaction between
processes. An interface
encodes communication
or information exchange
between processes. we
depict this as a link.
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Processes and interfaces

Σ13

Σ23

Σ12

A B

Σ1

Σ3

Σ2
M1

M2

M3

X

Processes are of specific
types. Interfaces are of
specific types.

Types determine how
processes and interfaces
can be connected. Only
matching types can be
connected.

We indicate types with
labels.
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Processes and probes

Associated to each process of type M is a space PM of probes with a
subset of primitive probes P+

M ⊆ PM.

A probe provides a finer description of a process.

A primitive probe may specify,
the presence of an apparatus
specific apparatus settings
the occurrence (or not) of a specific experimental outcome

A general probe may encode also
measurement values

There is always a null-probe � ∈ P+
M, representing the absence of any

apparatus, observation or intervention.
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Hierarchies of probes

Probes form hierarchies of generality. This induces a partial order on
the space of probes PM.

Consider an apparatus with one light that shows either red or green,
encoded in three different probes:

P(r) for outcome red
P(g) for outcome green
P(∗) for an unspecified outcome

The unspecified state is more general
than the others. Encode this in a
partial order on PM, setting
P(r) ≤ P(∗) and P(g) ≤ P(∗).

P(∗)

P(r)

P(g)

≤

≤
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Hierarchies of probes

Hierarchies may become
more complex when the
apparatus allows for more
distinct readings.

For example:
P(r, r) ≤ P(r, ∗) ≤ P(∗, ∗).

P(g, ∗)

P(r, ∗)

P(∗, ∗)

P(r, r)

P(r, g)

P(g, r)

P(g, g)

P(∗, r)

P(∗, g)
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Interfaces and boundary conditions

Σ

We associate to each interface Σ a
space of boundary conditions B+

Σ
.

This parametrizes possible
signals/information exchange
between adjacent processes.

Interfaces between the same pair of processes can be combined
arbitrarily. Write: Σ = Σ1 ∪ Σ2 ∪ · · · ∪ Σn.

Σ1

· · ·

Σ2 Σn

=

Σ

Induces a map between spaces of
boundary conditions:
B+
Σ1

× B+
Σ2

× · · · × B+
Σn

→ B+
Σ

We denote the joint interface for a process of type M by ∂M.
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Hierarchies of boundary conditions

Boundary conditions also form
hierarchies of generality. This gives rise
to a partial order on B+

Σ
. Here:

b1 ≤ b
b2 ≤ b b

b2

b1
≤

≤
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Values
Consider a process of type M.

M

JP, bKM = P b

To a probe P ∈ PM and a boundary
condition b ∈ B+

∂M we associate a
value JP, bKM. We shall take this to be a
real number. Formally, there is a
pairing J·, ·KM : PM × B+

∂M → R.

JP, bKM ∈ R+ quantifies compatibility between the apparatus or
outcome represented by the primitive probe P ∈ P+

M and the
boundary condition b ∈ B+

∂M.

Pairing and partial order structures are compatible:

P ≤ Q ⇐⇒ JP, bKM ≤ JQ, bKM ∀b ∈ B+
∂M

b ≤ c ⇐⇒ JP, bKM ≤ JP, cKM ∀P ∈ P+
M
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From values to measurements

A measurement is encoded by at least two probes:
One non-selective probe Q encodes the measurement apparatus.
One selective probe P encodes the measurement apparatus with a
selected outcome.

JQ, bKM ∈ R+ quantifies compatibility of the boundary condition
b ∈ B+

∂M with the presence of the apparatus.

JP, bKM ∈ R+ quantifies compatibility of the boundary condition
b ∈ B+

∂M with the presence of the apparatus with selected outcome.

Robert Oeckl (CCM-UNAM) the positive formalism 2018-02-07 15 / 26



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

From values to measurements

A measurement is encoded by at least two probes:
One non-selective probe Q encodes the measurement apparatus.
One selective probe P encodes the measurement apparatus with a
selected outcome.

JQ, bKM ∈ R+ quantifies compatibility of the boundary condition
b ∈ B+

∂M with the presence of the apparatus.

JP, bKM ∈ R+ quantifies compatibility of the boundary condition
b ∈ B+

∂M with the presence of the apparatus with selected outcome.

Robert Oeckl (CCM-UNAM) the positive formalism 2018-02-07 15 / 26



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Measurement probabilities

In M consider the probe P(∗) ∈ P+
M encoding a measurement device

and P(g) encoding in addition a selected outcome.

Given b ∈ B+
∂M the

probability Π for an
affirmative outcome is:

Π =
JP(g), bKMJP(∗), bKM

P(g) b P(∗) b

Since 0 ≤ P(g) ≤ P(∗) we have 0 ≤ Π ≤ 1 (if JP(∗), bKM , 0).
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Expectation values

Say we have an apparatus in M represented by a primitive probe
Q ∈ P+

M. The measurement may have n different outcome represented
by primitive probes P1, . . . ,Pn ∈ P+

M. We associate with each outcome a
pointer reading λ1, . . . , λn ∈ R. The expectation value E for the pointer
reading is,

E =
n∑

i=1

λi
JPi, bKMJQ, bKM

=
JP, bKMJQ, bKM

where we define,

P =
n∑

i=1

λiPi.

P ∈ PM is a general probe, not necessarily primitive.
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Convexity

In a probabilistic setting it makes sense to combine different probes
probabilistically, even when they correspond to different experimental
situations. Say we have probes P1, . . . ,Pn and probabilities p1, . . . , pn
such that

∑
k pk = 1. Then we can consider P :=

∑
k pkPk as a probe.

Since an arbitrary real multiple of a probe is a probe, this equips the
space PM of probes with the structure of a real vector space. The
subset of primitive probes P+

M ⊂ PM is a positive cone making PM into
a partially ordered vector space.

Similarly, the set of boundary conditions B+
Σ

forms a positive cone in
the partially ordered vector space BΣ generated by it. We call this the
space of generalized boundary conditions.

We extend the pairing, J·, ·KM : PM × B∂M → R

Robert Oeckl (CCM-UNAM) the positive formalism 2018-02-07 18 / 26



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Convexity

In a probabilistic setting it makes sense to combine different probes
probabilistically, even when they correspond to different experimental
situations. Say we have probes P1, . . . ,Pn and probabilities p1, . . . , pn
such that

∑
k pk = 1. Then we can consider P :=

∑
k pkPk as a probe.

Since an arbitrary real multiple of a probe is a probe, this equips the
space PM of probes with the structure of a real vector space. The
subset of primitive probes P+

M ⊂ PM is a positive cone making PM into
a partially ordered vector space.

Similarly, the set of boundary conditions B+
Σ

forms a positive cone in
the partially ordered vector space BΣ generated by it. We call this the
space of generalized boundary conditions.

We extend the pairing, J·, ·KM : PM × B∂M → R

Robert Oeckl (CCM-UNAM) the positive formalism 2018-02-07 18 / 26



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Convexity

In a probabilistic setting it makes sense to combine different probes
probabilistically, even when they correspond to different experimental
situations. Say we have probes P1, . . . ,Pn and probabilities p1, . . . , pn
such that

∑
k pk = 1. Then we can consider P :=

∑
k pkPk as a probe.

Since an arbitrary real multiple of a probe is a probe, this equips the
space PM of probes with the structure of a real vector space. The
subset of primitive probes P+

M ⊂ PM is a positive cone making PM into
a partially ordered vector space.

Similarly, the set of boundary conditions B+
Σ

forms a positive cone in
the partially ordered vector space BΣ generated by it. We call this the
space of generalized boundary conditions.

We extend the pairing, J·, ·KM : PM × B∂M → R

Robert Oeckl (CCM-UNAM) the positive formalism 2018-02-07 18 / 26



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Convexity

In a probabilistic setting it makes sense to combine different probes
probabilistically, even when they correspond to different experimental
situations. Say we have probes P1, . . . ,Pn and probabilities p1, . . . , pn
such that

∑
k pk = 1. Then we can consider P :=

∑
k pkPk as a probe.

Since an arbitrary real multiple of a probe is a probe, this equips the
space PM of probes with the structure of a real vector space. The
subset of primitive probes P+

M ⊂ PM is a positive cone making PM into
a partially ordered vector space.

Similarly, the set of boundary conditions B+
Σ

forms a positive cone in
the partially ordered vector space BΣ generated by it. We call this the
space of generalized boundary conditions.

We extend the pairing, J·, ·KM : PM × B∂M → R

Robert Oeckl (CCM-UNAM) the positive formalism 2018-02-07 18 / 26



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Composition

A set of processes joined by interfaces may be considered itself a
process. Say we have a process of type M and one of type N. We say
the composite process has type M ∪ N.

M N

=

M ∪ N

This induces a composition of associated probes P ∈ PM with Q ∈ PN.
We write for the composite probe P ⋄Q ∈ PM∪N.
This yields a composition map ⋄ : PM × PN → PM∪N.
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Composition

A set of processes joined by interfaces may be considered itself a
process. Say we have a process of type M and one of type N. We say
the composite process has type M ∪ N.

M N

=

M ∪ N

P Q P ⋄Q

This induces a composition of associated probes P ∈ PM with Q ∈ PN.
We write for the composite probe P ⋄Q ∈ PM∪N.
This yields a composition map ⋄ : PM × PN → PM∪N.
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Slice processes and inner product
For any type Σ of interface we postulate a type of slice process Σ̂:

∂Σ̂ = Σ ∪ Σ

the null probe “passes signals through”

=

Σ̂

�
Σ Σ Σ

Putting boundary conditions on the two
sides allows evaluation. This yields an inner
product BΣ × BΣ → R on the space of
boundary conditions.

Lb, cMΣ := J�, b ⊗ cKΣ̂
cb

Σ Σ

Σ̂

�

This should be symmetric and positive-definite.
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Slice processes and inner product
For any type Σ of interface we postulate a type of slice process Σ̂:

∂Σ̂ = Σ ∪ Σ

the null probe “passes signals through”

=

Σ̂

�
Σ Σ Σ

Putting boundary conditions on the two
sides allows evaluation. This yields an inner
product BΣ × BΣ → R on the space of
boundary conditions.

Lb, cMΣ := J�, b ⊗ cKΣ̂
cb

Σ Σ

Σ̂

�

This should be symmetric and positive-definite.
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Composition of slices

Two processes of the same slice type compose to one process of this
slice type. Null probes then compose to a null probe.

A decomposition of the identity in terms of a basis yields a notion of
composition of slice probes. For the null probe,

Σ̂

= � ξkb b cc ξk
∑

k

Σ̂Σ̂

� �

Lb, cMΣ̂ =
∑
k∈I

Lb, ξkMΣ̂ Lξk, cMΣ̂
Here, {ξk}k∈I is an ON-basis of BΣ.
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Composition rule for probes

As a generalization we obtain the composition rule for probes.

M N

=

M ∪ N

P QP ⋄Q ξkb b cc ξk
∑

k

JP ⋄Q, b ⊗ cKM∪N =
∑
k∈I

JP, b ⊗ ξkKM JQ, ξk ⊗ cKN

Here, {ξk}k∈I is an ON-basis of BΣ.
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(Abstract) Positive Formalism

Obtain an axiomatic framework for encoding physical theories with:
types
▶ a collection of process types
▶ a collections of interface types
▶ a boundary map from process types to interface types M 7→ ∂M

objects
▶ a partially ordered vector space of probes PM per process type M
▶ a partially ordered vector space of generalized boundary

conditions BΣ per interface type Σ

compositions
▶ decomposition of interface types Σ = Σ1 ∪ · · · ∪ Σn with associated

positive isomorphism BΣ1
⊗ · · · ⊗ BΣn → BΣ

▶ composition of process types M and N to M ∪ N and probes
⋄ : PM × PN → PM∪N

values: positive pairings J·, ·KM : PM × B∂M → R
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Partially ordered vector space
A real vector space V with a partial order such that:

a ≤ b ⇐⇒ a + c ≤ b + c ∀a, b, c ∈ V
a ≤ b ⇐⇒ λa ≤ λb ∀a, b ∈ V, ∀λ > 0

Require generating cone, i.e., V = V+ − V+. Require Archimedean
order, i.e., for any v ∈ V have that if there exists w ∈ V+ such that
v ≤ λw for all λ > 0 then v ≤ 0.

Positive map
A linear map that maps positive elements to positive elements.

Sharply positive inner product
A symmetric bilinear form V × V → R such that if a, b ∈ V+ then
(a, b) ≥ 0 and if for some a ∈ V we have (a, b) ≥ 0 for all b ∈ V+ then
a ∈ V+.
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abstract
positive

formalism

spacetime
positive

formalism

convex
operational
framework

abstract
quantum
theory

general
boundary

formulation
/

axiomatic
QFT

standard
formulation
of quantum

theory

abstract
classical
statistical

theory

spacetime
statistical
field theory

statistical
mechanics

+ spacetime + locality

+ time + causality

classical
(lattices)

quantum
(anti-lattices)
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