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Motivation

In the standard formulation of quantum theory one assigns to a system
a complex Hilbert space of instantaneous states. Time-evolution is
described by unitary operators arising from exponentiation of a
hermitian operator, called the Hamiltonian. Instantaneous
measurements are described by hermitian operators (or more
generally by completely positive maps).

This standard formulation of quantum theory has severe deficiencies
that impede its application in a general relativistic context, notably:

Dependence on a predetermined notion of time
Non-locality in space
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How to proceed?

How do we obtain a better foundation of quantum theory?

Learn from nature! For a theorist this means: Take the best description
of nature at a fundamental level that we have available. This is
quantum field theory. Analyze its operational core and look for clues
of an underlying structure.

This leads us here to the amplitude formalism of the general
boundary formulation where

there is no reference to time
locality is manifest
the standard formulation is recovered (when applicable)
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Lessons from quantum field theory

Important structural features of quantum field theory as it is
practically used appear unnatural from the point of view of the
standard formulation. We focus on a few:

1 The Feynman path integral. This turns out to be much more
suitable to describe the dynamics of quantum field theory than
Hamiltonian or time-evolution operators.

2 Crossing symmetry. This property of the S-matrix is completely
unmotivated from the point of view of the standard formulation.

3 The time-ordered product of fields. This rather than the operator
product is the relevant structure to extract physical predictions.

Taking the listed structures seriously from a foundational point of
view gives valuable clues towards a reformulation.
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Transition amplitudes
1 – From the path integral to TQFT

The dynamics of quantum field theory is efficiently described using
the Feynman path integral [Feynman 1948]. In particular, the transition
amplitudes describing time-evolution can be recovered from the path
integral.

x
t1

t2
t ⟨ψ2,U[t1,t2]ψ1⟩ =∫

Kt1×Kt2

Dφ1Dφ2 ψ1(φ1)ψ2(φ2)Z[t1,t2](φ1, φ2)

Z[t1,t2](φ1, φ2) :=

∫
K[t1,t2],ϕ |ti=φi

Dϕ eiS(ϕ)

K[t1,t2] – space of field configurations in the spacetime region [t1, t2] × R3.
Kti – instantaneous space of field configurations at ti.
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Composition in time
1 – From the path integral to TQFT

Consider the composition of time-evolutions
in operator form: U[t1,t3] = U[t2,t3] ◦ U[t1,t2]

in terms of matrix elements:
⟨ψ3,U[t1,t3]ψ1⟩ =

∑
i∈N⟨ψ3,U[t2,t3]ζi⟩⟨ζi,U[t1,t2]ψ1⟩

x
t1

t2

t
t3

In the path integral picture this arises
from a temporal composition property of
the path integral.

Z[t1,t3](φ1, φ3) =∫
Kt2

Dφ2 Z[t1,t2](φ1, φ2)Z[t2,t3](φ2, φ3)
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Composition in spacetime I
1 – From the path integral to TQFT

The path integral satisfies a much more general composition property
in spacetime. This comes from:

The locality of the integral over field configurations in spacetime
The additivity of the action in spacetime: Say M1 and M2 are
non-overlapping spacetime regions, then,

SM1∪M2 = SM1 + SM2 and so eiSM1∪M2 = eiSM1 eiSM2 .
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Composition in spacetime II
1 – From the path integral to TQFT

M1

M2

Σ1
Σ2

φ1 φ2

M1

M2

Σ Σ

Σ1
Σ2

φΣ
φ1 φ2

ZM1∪M2(φ1, φ2) =

∫
KΣ

DφΣ ZM1(φ1, φΣ)ZM2(φΣ, φ2)

Lesson
This suggests that quantum (field) theory itself should incorporate
such a generalized composition property.
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Topological quantum field theory
1 – From the path integral to TQFT

This property of the path integral motivated the notion of topological
quantum field theory [E. Witten, G. Segal, M. Atiyah etc. ca. 1988].

H∂M

ρMM

HΣ

Σ

To geometric structures (pieces
of spacetime)

hypersurfaces Σ: oriented
manifolds of dim. d − 1

regions M: oriented
manifolds of dim. d with
boundary

associate algebraic structures
to Σ a Hilbert space HΣ

to M an amplitude map
ρM : H∂M → C
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Core axioms
1 – From the path integral to TQFT

Let Σ denote Σ with opposite orientation. Then HΣ = H ∗
Σ.

(Decomposition rule) Let Σ = Σ1 ∪ Σ2 be a disjoint union of
hypersurfaces. Then HΣ = HΣ1 ⊗ HΣ2 .
(Gluing rule) If M1 and M2 are adjacent regions, then:

M1

M2

Σ1
Σ2

ψ1 ψ2

M1

M2

Σ Σ

Σ1
Σ2

ξ∗iξi
ψ1 ψ2

ρM1∪M2(ψ1 ⊗ ψ2) = ρM1 ⋄ ρM2(ψ1 ⊗ ψ2) :=
∑
i∈N

ρM1(ψ1 ⊗ ζi)ρM2(ζ
∗
i ⊗ ψ2)

Here, ψ1 ∈ HΣ1
, ψ2 ∈ HΣ2

and {ζi}i∈N is an ON-basis of HΣ.
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Recovering transition amplitudes
1 – From the path integral to TQFT

x

M

Σ1

Σ2

t1

t2
Σ2

region: M = [t1, t2] × R3

boundary: ∂M = Σ1 ∪ Σ2

state space:
H∂M = HΣ1⊗HΣ2

= HΣ1⊗H ∗
Σ2

Via time-translation symmetry identify HΣ1 � HΣ2 � H . Then,

ρ[t1,t2](ψ1 ⊗ ψ∗
2) = ⟨ψ2,U[t1,t2]ψ1⟩.

But, does it make sense do go beyond this example?
Does the boundary Hilbert space H∂M have a useful physical
interpretation in general?
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Crossing symmetry
2 – Crossing symmetry and the joint state space

Quantum field theory satisfies crossing symmetry. That is, transition
amplitudes remain (essentially) invariant when individual particles are
moved between the in- and the out-state spaces.

Thus, particles might reasonably thought of as living in a joint product
Hilbert space Hin ⊗ Hout, distinguished merely by quantum numbers.
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Boundary state spaces
2 – Crossing symmetry and the joint state space

The analogous picture for a connected boundary looks like this:

Lesson
Crossing symmetry is indispensable for state spaces associated to
more general boundaries to make sense.
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.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Probabilities: Born rule (I)
Consider a simple measurement:

At t1 we prepare a state ψ.
At t2 we ask whether the system is in state η.

ψ

x

M

t1

t2

η

ask for η

prepare ψ

The conditional probability for this is P(η |ψ) = |⟨η,Uψ⟩|2

Probabilities in quantum theory are conditional and involve two
ingredients: preparation and question.
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Probabilities: Born rule (II)

Suppose we ask instead for a range of possible outcomes.

ψ

ηk

t

η1
. . .

Ask for the outcome to be in the subspace
A ⊆ H spanned by the orthonormal vectors
η1, . . . , ηk. These can be seen as alternative and
exclusive outcomes.

Prepare ψ.

The conditional probability for this is P(A|ψ) = ∑k
i=1 |⟨ηk,Uψ⟩|2

Probabilities depend generally on subspaces. The case of a single state
arises as the special case of a one-dimensional subspace.
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Probabilities: Born rule (III)
We may need to condition on a range of outcomes. Say, the apparatus
registers only measurements in this range.

ψ

ηk

t

η1
ηi

Ask for the outcome to be ηi given that the
output lies in the subspace S ⊆ H spanned by
the orthonormal vectors η1, . . . , ηk.

Prepare ψ.

The conditional probability for this is

P(ηi |S, ψ) =
|⟨ηi,Uψ⟩|2∑k

i=1 |⟨ηk,Uψ⟩|2

Probabilities arise generally as quotients.
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Probabilities: Born rule (IV)

We may also need to condition past events on future events. Suppose
a measurement is prepared with uniform probability over all states.
(This is the maximally mixed state.) We register measurements with a
fixed outcome only and ask for a specific initial state.

ψ

η

t

Register (or select) outcomes η only.

Prepare with uniform probability ψ1, . . . , ψn
(an ON-basis of H). Ask for the initial state ψ.

The conditional probability for this is P(ψ |η) = |⟨η,Uψ⟩|2

The conditional structure need not be related to the causal structure.
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Probabilities
Generalizing the Born rule

Consider a spacetime region M. The associated amplitude ρM allows to
extract probabilities for measurements in M.

Probabilities in quantum theory are generally conditional probabilities.
They depend on two pieces of information. Here these are:

S ⊆ H∂M representing preparation or knowledge
A ⊆ S representing observation or the question

The probability that the physics in M is described by A given that it is
described by S is: [RO 2005]

P(A|S) =
∑

i∈J |ρM(PAζi)|2∑
i∈I |ρM(PSζi)|2

Here {ζi}i∈I is an ON-basis of H∂M and PS , PA are orthogonal projectors.
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Probabilities
Generalizing the Born rule

Consider a spacetime region M. The associated amplitude ρM allows to
extract probabilities for measurements in M.

Probabilities in quantum theory are generally conditional probabilities.
They depend on two pieces of information. Here these are:

S ⊆ H∂M representing preparation or knowledge
A ⊆ S representing observation or the question

The probability that the physics in M is described by A given that it is
described by S is: [RO 2005, RO 2016]

P(A|S) =
∑

i∈J |ρM(PAζi)|2∑
i∈I |ρM(PSζi)|2

=
J�,PAKMJ�,PSKM

Here {ζi}i∈I is an ON-basis of H∂M and PS , PA are orthogonal projectors.
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Recovering standard probabilities
Generalizing the Born rule

x

M

Σ1

Σ2

t1

t2
Σ2

To compute the probability of measuring ψ2 at t2 given that we
prepared ψ1 at t1 we set

S = {ψ1 ⊗ η∗ : η ∈ H}, A = {λ ψ1 ⊗ ψ∗
2 : λ ∈ C}.

The resulting expression yields correctly

P(A|S) =
|ρ[t1,t2](ψ1 ⊗ ψ∗

2)|2

1
= |⟨ψ2,U[t1,t2]ψ1⟩|2.
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Observables are labeled
3 – The time-ordered product and composition of observables

Standard observables of QFT are values of fields ϕ̂(x) and their
derivatives ˆ∂0ϕ(x) at spacetime points x.
These observables carry a label x specifying when (and where)
they are applied.
For consistency under changes of reference frame we need

[A(x),B(y)] = 0 if x and y are spacelike separated,

that is, if there is a reference frame where x and y are
instantaneous.
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The time-ordered product
3 – The time-ordered product and composition of observables

There is only one operationally meaningful composition of two
observables, given by the commutative time-ordered product:

T A(x)B(y) :=
{

A(x)B(y) if x0 > y0
B(y)A(x) if x0 < y0

In QFT all physically measurable quantities are constructed via
the time-ordered product. The noncommutative operator product
is never directly used.
The operator product can be recovered from the time-ordered
product. For equal times:

[A(t, x̄),B(t, ȳ)] = lim
ϵ→0

TA(t + ϵ, x̄)B(t − ϵ, ȳ) − TB(t + ϵ, ȳ)A(t − ϵ, x̄)

Robert Oeckl (CCM-UNAM) quantum field theory 2018-05-02 22 / 27



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

The path integral and observables
3 – The time-ordered product and composition of observables

Observables in QFT are quantized through the path integral:

⟨ψ2, Âψ1⟩ =
∫

Kt1×Kt2

Dφ1Dφ2 ψ1(φ1)ψ2(φ2)ZA
[t1,t2](φ1, φ2)

ZA
[t1,t2](φ1, φ2) :=

∫
K[t1,t2],ϕ |ti=φi

Dϕ A(ϕ)eiS(ϕ)

x
t1

t2
t

p
For example, for the classical observable
A = ϕ(p), the quantization Â = ϕ̂(p) is the
usual field operator.

Lesson
Observables are naturally spacetime objects.
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Composition of observables
3 – The time-ordered product and composition of observables

The observables of QFT inherit the composition property of the path
integral. This is the origin of the time-ordered product.

x
t1

t2

t
t3

p

q
For example, if A = ϕ(p)ϕ(q), then
Â = Tϕ̂(p)ϕ̂(q). This can also be obtained
by spacetime composition of ϕ̂(p) with
ϕ̂(q).

Lesson
Quantum observables are spacetime composable in the same way as
amplitudes. Moreover, there is a correspondence between the classical
product and quantum composition.
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Observables in the GBF
Observables are associated to regions M and encoded through
observable maps ρO

M : H∂M → C, similar to the amplitude maps.

M1

M2

Σ1
Σ2

ψ1 ψ2

M1

M2Σ Σ

Σ1
Σ2

ξ∗iξi
ψ1 ψ2

O1
O2 O1

O2

Observables can be composed in the same way as amplitudes via
gluing of the underlying regions. The same formula as for amplitudes
applies. We denote their composition as

ρO1

M1
⋄ ρO2

M2
: H∂(M1∪M2) → C
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Recovering standard observables

x

M
Σ

Σ

t ΣO
region: M = [t, t] × R3

boundary: ∂M = Σ ∪ Σ

state space:
H∂M = HΣ ⊗ HΣ = HΣ ⊗ H ∗

Σ

Recall HΣ � H . In this geometry of an infinitesimally thin slice there is
a correspondence between observable maps ρO

[t,t] : HΣ ⊗ H ∗
Σ → C and

standard observables as operators Ô : H → H via matrix elements:

ρO
[t,t](ψ1 ⊗ ψ

∗
2) = ⟨ψ2, Ôψ1⟩ ∀ψ1, ψ2 ∈ H .
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Composition correspondence

Suppose we are given classical observables O1 and O2 localized in
adjacent spacetime regions M1 and M2 respectively. In the classical
theory there is a natural composition of these observables given by the
ordinary product O1 · O2 in the joint spacetime region M1 ∪ M2.

We then say that a quantization prescription O1 7→ ρO1

M1
,O2 7→ ρO2

M2

satisfies the composition correspondence property if,

ρO1 ·O2

M1∪M2
= ρO1

M1
⋄ ρO2

M2

As already mentioned, quantum field theory satisfies this!

Robert Oeckl (CCM-UNAM) quantum field theory 2018-05-02 27 / 27



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Learning from QFT (essay):
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