Local functorial quantization of field theory (I)

Robert Oeckl

Centro de Ciencias Matemáticas Universidad Nacional Autónoma de México Morelia, Mexico

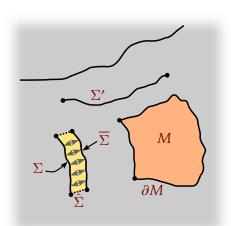
Seminar *General Boundary Formulation* 23 May 2018

Quantization (canonical)

concept	classical theory		quantum theory
states	phase space <i>L</i>	\longrightarrow	Hilbert space <i>H</i>
observables	functions on phase space $C(L)$	\longrightarrow	operator algebra $\mathcal{B}(\mathcal{H})$
quantization condition	Poisson bracket $\{\cdot,\cdot\}$	\longrightarrow	commutator $[\cdot, \cdot]$

spacetime – manifolds

Fix dimension *d*. Manifolds are **oriented** and may carry **additional structure**: differentiable, metric, complex, etc.



region M

d-manifold with boundary.

hypersurface Σ

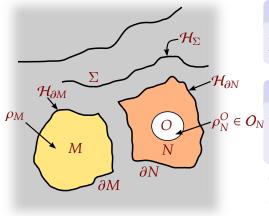
d - 1-manifold with boundary, with germ of d-manifold.

slice region $\hat{\Sigma}$

d – 1-manifold with boundary, with germ of d-manifold, interpreted as "infinitely thin" region.

QFT – axioms I

Assignment of algebraic structures to geometric ones.



(T1) per hypersurface Σ

A complex Hilbert space \mathcal{H}_{Σ} .

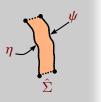
(T4) per region M

A complex vector space O_M of linear maps $\mathcal{H}_{\partial M}^{\circ} \to \mathbb{C}$. A special **unit** $\rho_M \in O_M$.

The choice of an element of O_M for a region M is indicated by a **label**.

QFT – axioms II

$$egin{array}{cccc} \mathcal{H}_{\Sigma_1} & & & & \\ \otimes & & \mathcal{H}_{\Sigma} & & & \\ \mathcal{H}_{\Sigma_2} & & & & & \\ \end{array}$$



(T1b) per hypersurface Σ

A conjugate linear involution $\iota_{\Sigma}: \mathcal{H}_{\Sigma} \to \mathcal{H}_{\overline{\Sigma}}$.

(T2) per hypersurface decomposition $\Sigma = \Sigma_1 \cup \Sigma_2$

 $\Sigma = \Sigma_1 \cup \Sigma_2$

A linear isomorphism $\tau : \mathcal{H}_{\Sigma_1} \otimes \mathcal{H}_{\Sigma_2} \to \mathcal{H}_{\Sigma}$.

(T3x) per hypersurface Σ

The unit gives rise to the **positive-definite** inner product $\langle \iota_{\overline{\Sigma}}(\psi), \eta \rangle_{\Sigma} = \rho_{\hat{\Sigma}} \circ \tau(\psi \otimes \eta)$.

QFT – axioms III

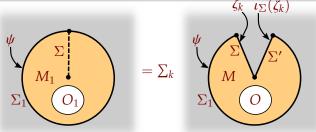
(T5a) per disjoint composition of regions $M = M_1 \sqcup M_2$

 $\circ: O_{M_1} \times O_{M_2} \to O_M \text{ given by } \\ (\rho_{M_1}^{O_1} \circ \rho_{M_2}^{O_2})(\tau(\psi_1 \otimes \psi_2)) = \rho_{M_1}^{O_1}(\psi_1)\rho_{M_2}^{O_2}(\psi_2). \text{ Also } \rho_{M_1} \circ \rho_{M_2} = \rho_M.$

(T5b) per self-composition of region M to M_1 along Σ

 $\diamond: O_M \to O_{M_1}$ given by

$$\rho_{M_1}^{O_1}(\psi) = (\diamond \rho_M^O)(\psi) := \sum_k \rho_M^O(\tau(\psi \otimes \zeta_k \otimes \iota_{\Sigma}(\zeta_k))). \ \diamond \rho_M = \rho_{M_1}.$$



 $\{\zeta_k\}_{k\in I}$ orthonormal basis of \mathcal{H}_{Σ} .

Plan

continuum classical FT \longrightarrow axiomatic classical FT \longrightarrow axiomatic QFT

Lagrangian field theory (I)

Formulate field theory in terms of first order Lagrangian density $\Lambda(\varphi, \partial \varphi, x)$. For a spacetime region M the **action** of a field ϕ is

$$S_M(\phi) := \int_M \Lambda(\phi(\cdot), \partial \phi(\cdot), \cdot).$$

Classical solutions in M are extremal points of this action. These are obtained by setting to zero the first variation of the action,

$$(\mathrm{d}S_M)_\phi(X) = \int_M X^a \left(\frac{\delta \Lambda}{\delta \varphi^a} - \partial_\mu \frac{\delta \Lambda}{\delta \, \partial_\mu \varphi^a} \right) (\phi) + \int_{\partial M} X^a \partial_\mu \, \mathsf{J} \frac{\delta \Lambda}{\delta \partial_\mu \varphi^a} (\phi)$$

under the condition that the infinitesimal field X vanishes on ∂M . This yields the **Euler-Lagrange equations**,

$$\left(\frac{\delta\Lambda}{\delta\varphi^a} - \partial_\mu \frac{\delta\Lambda}{\delta\,\partial_\mu\varphi^a}\right)(\phi) = 0.$$

Lagrangian field theory (II)

The boundary term can be defined for an arbitrary hypersurface Σ .

$$(\theta_{\Sigma})_{\phi}(X) = -\int_{\Sigma} X^a \partial_{\mu} \, \mathrm{d} \frac{\delta \Lambda}{\delta \partial_{\mu} \varphi^a}(\phi)$$

This 1-form is called the **symplectic potential**. Its exterior derivative is the **symplectic 2-form**,

$$\begin{split} (\omega_{\Sigma})_{\phi}(X,Y) &= (\mathrm{d}\theta_{\Sigma})_{\phi}(X,Y) = -\frac{1}{2} \int_{\Sigma} \left((X^{b}Y^{a} - Y^{b}X^{a}) \, \partial_{\mu} \, \rfloor \, \frac{\delta^{2}\Lambda}{\delta\varphi^{b}\delta \, \partial_{\mu}\varphi^{a}}(\phi) \right. \\ & + (Y^{a}\partial_{\nu}X^{b} - X^{a}\partial_{\nu}Y^{b}) \, \partial_{\mu} \, \rfloor \, \frac{\delta^{2}\Lambda}{\delta \, \partial_{\nu}\varphi^{b}\delta \, \partial_{\mu}\varphi^{a}}(\phi) \bigg) \, . \end{split}$$

We denote the space of solutions in M by L_M and the space of germs of solutions on a hypersurface Σ by L_{Σ} .

□ ▶ < □ ▶ < □ ▶ < □ ▶
□ ▶

Lagrangian field theory (III)

Let M be a region and $\phi \in L_{\partial M}$. Then ϕ may or may not be induced from a solution in M. If ϕ arises from a solution in M and X, Y arise from infinitesimal solutions in M, then,

$$(\omega_{\partial M})_{\phi}(X,Y) = (\mathrm{d}\theta_{\partial M})_{\phi}(X,Y) = -(\mathrm{d}\mathrm{d}S_{M})_{\phi}(X,Y) = 0.$$

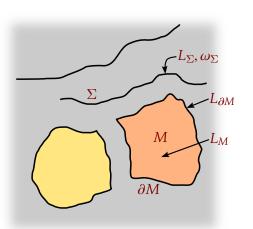
This means, L_M induces an **isotropic** submanifold of $L_{\partial M}$.

It is natural to require that the symplectic form is **non-degenerate**. We are then led to the converse statement: If given X we have $(\omega_{\partial M})_{\phi}(X,Y)=0$ for all induced Y, then X itself must be induced. This means, L_M induces a **coisotropic** submanifold of $L_{\partial M}$.

 L_M induces a **Lagrangian** submanifold of $L_{\partial M}$.

[Kijowski, Tulczyjew 1979]

Axiomatic classical field theory



per **hypersurface** Σ :

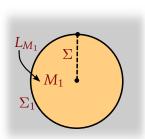
The space of germs of solutions near Σ . This is a symplectic manifold $(L_{\Sigma}, \omega_{\Sigma})$.

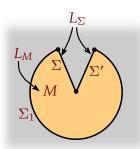
per **region** *M* :

The **space of solutions** in M. Forgetting the interior yields a map $L_M \to L_{\partial M}$. Under this map L_M is a **Lagrangian submanifold** $L_M \subseteq L_{\partial M}$.

Axiomatic classical field theory

There are additional axioms related to gluing etc. like this one:

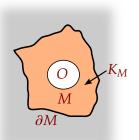




$$L_{M_1} \hookrightarrow L_M \rightrightarrows L_{\Sigma}$$

Observables

In relativistic field theory observables need to be defined on configuration space.



per region M:

The **configuration space** K_M in M. Have $L_M \subseteq K_M$. Also a space C_M of **classical observables** given by maps $K_M \to \mathbb{R}$.

per region M with label O:

Assign the **classical observable** $O \in C_M$. If there is no label assign the observable 1 with constant value 1.

Quantization (local)

concept	classical theory		quantum theory
states: per hypersurface Σ	phase space L_{Σ}	\longrightarrow	Hilbert space \mathcal{H}_{Σ}
observables: per region <i>M</i>	functions on configuration space C_M	<i>→</i>	space of observable maps $O_M \subseteq \mathcal{H}^{\star}_{\partial M}$
quantization condition	product of functions $C_M \times C_N \to C_{M \cup N}$	→	composition of observable maps $O_M \times O_N \rightarrow O_{M \cup N}$

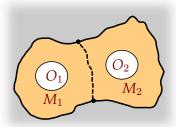
Quantization – requirements

For any region M we would like a linear quantization map $Q_M: C_M \to O_M$. Moreover, $Q_M(1) = \rho_M$.

What else? (No commutation relations!)

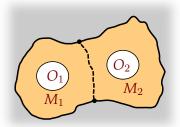
Observables: Composition correspondence

Consider **classical observables** O_1 and O_2 localized in spacetime regions M_1 and M_2 , encoded in maps $O_i: K_{M_i} \to \mathbb{R}$. The natural **composition** of these observables given by the **product of functions** $O_1 \cdot O_2$ in the joint spacetime region $M_1 \cup M_2$ yielding a map $O_1 \cdot O_2: K_{M_1 \cup M_2} \to \mathbb{R}$.



Observables: Composition correspondence

Consider **classical observables** O_1 and O_2 localized in spacetime regions M_1 and M_2 , encoded in maps $O_i: K_{M_i} \to \mathbb{R}$. The natural **composition** of these observables given by the **product of functions** $O_1 \cdot O_2$ in the joint spacetime region $M_1 \cup M_2$ yielding a map $O_1 \cdot O_2: K_{M_1 \cup M_2} \to \mathbb{R}$.



Composition and quantization should commute

$$\rho_{M_1 \cup M_2}^{O_1 \cdot O_2} = \rho_{M_1}^{O_1} \diamond \rho_{M_2}^{O_2}$$

Schrödinger-Feynman quantization: hypersurfaces

Topological quantum field theory was originally inspired by the **Feynman path integral** and its composition properties. The Feynman path integral is defined in the **Schrödinger representation** where states are **wave functions** on **field configurations**.

Schrödinger-Feynman quantization: hypersurfaces

Topological quantum field theory was originally inspired by the **Feynman path integral** and its composition properties. The Feynman path integral is defined in the **Schrödinger representation** where states are **wave functions** on **field configurations**.

The state space \mathcal{H}_{Σ} for the hypersurface Σ is the space of complex functions on K_{Σ} with inner product,

$$\langle \psi', \psi \rangle_{\Sigma} = \int_{K_{\Sigma}} \mathcal{D}\varphi \, \overline{\psi'(\varphi)} \psi(\varphi).$$

Here, $\mathcal{D}\varphi$ is a translation invariant measure on K_{Σ} .

Such a measure does not exist in most cases. As usual, it is fruitful to proceed pretending that it does.

Schrödinger-Feynman quantization: regions

The **Feynman path integral** serves to define the **amplitude map** $\rho_M : \mathcal{H}_{\partial M} \to \mathbb{C}$ in a spacetime region M,

$$\rho_{M}(\psi) = \int_{\phi \in K_{M}} \mathcal{D}\phi \, \psi(\phi|_{\partial M}) \, e^{iS_{M}(\phi)}.$$

Similarly, it defines the **observable map** $\rho_M^O : \mathcal{H}_{\partial M} \to \mathbb{C}$ for observable $O : K_M \to \mathbb{R}$ in region M,

$$\rho_{M}^{O}(\psi) = \int_{\phi \in K_{M}} \mathcal{D}\phi \, \psi(\phi|_{\partial M}) \, O(\phi) \, e^{iS_{M}(\phi)}.$$

Again, the measure $\mathcal{D}\phi$ does not actually exist in most cases.

These quantum data "automatically" satisfy the quantum axioms. Problem: This is not well defined.

[RO 2010; 2011; 2012]

For **free field theory** the informal Schrödinger-Feynman prescription can be replaced by a rigorous and functorial quantization scheme:

[RO 2010; 2011; 2012]

For **free field theory** the informal Schrödinger-Feynman prescription can be replaced by a rigorous and functorial quantization scheme:

• For state spaces, the Schrödinger representation is replaced by the **holomorphic representation**, a flavor of **geometric quantization**.

[RO 2010; 2011; 2012]

For **free field theory** the informal Schrödinger-Feynman prescription can be replaced by a rigorous and functorial quantization scheme:

- For state spaces, the Schrödinger representation is replaced by the **holomorphic representation**, a flavor of **geometric quantization**.
- Additional data is required: One **complex structure** $J_{\Sigma}: L_{\Sigma} \to L_{\Sigma}$ per hypersurface.

[RO 2010; 2011; 2012]

For **free field theory** the informal Schrödinger-Feynman prescription can be replaced by a rigorous and functorial quantization scheme:

- For state spaces, the Schrödinger representation is replaced by the **holomorphic representation**, a flavor of **geometric quantization**.
- Additional data is required: One **complex structure** $J_{\Sigma}: L_{\Sigma} \to L_{\Sigma}$ per hypersurface.
- There is a **gluing anomaly**, modifying the gluing axiom **(T5b)** to $\diamond \rho_M = \rho_{M_1} \cdot c$
- Standard results in flat and globally hyperbolic spacetime are recovered.

[RO 2010; 2011; 2012]

For **free field theory** the informal Schrödinger-Feynman prescription can be replaced by a rigorous and functorial quantization scheme:

- For state spaces, the Schrödinger representation is replaced by the **holomorphic representation**, a flavor of **geometric quantization**.
- Additional data is required: One **complex structure** $J_{\Sigma}: L_{\Sigma} \to L_{\Sigma}$ per hypersurface.
- There is a **gluing anomaly**, modifying the gluing axiom **(T5b)** to $\diamond \rho_M = \rho_{M_1} \cdot c$
- Standard results in flat and globally hyperbolic spacetime are recovered.

Theorem

The quantum data satisfies the QFT axioms (possibly with some infinite gluing anomalies).