Local functorial quantization of field theory (II)

Robert Oeckl

Centro de Ciencias Matemáticas Universidad Nacional Autónoma de México Morelia, Mexico

Seminar General Boundary Formulation 30 May 2018

<ロ> (四) (四) (三) (三) (三) (三)

concept	classical theory		quantum theory
states	phase space (L, ω)	\longrightarrow	Hilbert space <i>H</i>
observables	functions on phase space $C(L)$	\rightarrow	operator algebra $\mathcal{B}(\mathcal{H})$
quantization condition	Poisson bracket $\{\cdot, \cdot\}$	\rightarrow	commutator $[\cdot, \cdot]$

<ロト < 四ト < 三ト < 三ト

Quantization (local)

concept	classical theory		quantum theory
states: per hypersurface Σ	phase space $(L_{\Sigma}, \omega_{\Sigma})$	\rightarrow	Hilbert space \mathcal{H}_{Σ}
observables: per region <u>M</u>	functions $K_M \rightarrow \mathbb{C}$ on configuration space C_M	\longrightarrow	space of observable maps $O_M \subseteq \mathcal{H}^{\star}_{\partial M}$
quantization condition	product of functions $C_M \times C_N \to C_{M \cup N}$	\longrightarrow	composition of observable maps $O_M \times O_N \to O_{M \cup N}$

Robert Oeckl (CCM-UNAM)

<ロト < 四ト < 三ト < 三ト

Schrödinger-Feynman quantization: hypersurfaces

Topological quantum field theory was originally inspired by the **Feynman path integral** and its composition properties. The Feynman path integral is defined in the **Schrödinger representation** where states are **wave functions** on **field configurations**.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Schrödinger-Feynman quantization: hypersurfaces

Topological quantum field theory was originally inspired by the **Feynman path integral** and its composition properties. The Feynman path integral is defined in the **Schrödinger representation** where states are **wave functions** on **field configurations**.

The state space \mathcal{H}_{Σ} for the hypersurface Σ is the space of complex functions on K_{Σ} with inner product,

$$\langle \psi', \psi \rangle_{\Sigma} = \int_{K_{\Sigma}} \mathcal{D}\varphi \ \overline{\psi'(\varphi)} \psi(\varphi).$$

Here, $\mathcal{D}\varphi$ is a **translation invariant measure** on K_{Σ} .

Such a measure does not exist in most cases. As usual, it is fruitful to proceed pretending that it does.

イロン イロン イヨン イヨン 三日

Schrödinger-Feynman quantization: regions

The **Feynman path integral** serves to define the **amplitude map** $\rho_M : \mathcal{H}_{\partial M} \to \mathbb{C}$ in a spacetime region *M*,

$$\rho_M(\psi) = \int_{\phi \in K_M} \mathcal{D}\phi \,\psi(\phi|_{\partial M}) \, e^{\mathrm{i} S_M(\phi)}.$$

Similarly, it defines the **observable map** $\rho_M^O : \mathcal{H}_{\partial M} \to \mathbb{C}$ for observable $O : K_M \to \mathbb{R}$ in region M,

$$\rho_M^O(\psi) = \int_{\phi \in K_M} \mathcal{D}\phi \,\psi(\phi|_{\partial M}) \,O(\phi) \,e^{\mathrm{i}S_M(\phi)}.$$

Again, the measure $\mathcal{D}\phi$ does not actually exist in most cases.

These quantum data "automatically" satisfy the quantum axioms. Problem: This is not well defined.

Robert Oeckl (CCM-UNAM)

Local quantization

2018-05-30 5 / 23

ロマス語マスヨア

Universal results in free field theory

[RO 2010; 2011; 2012]

For **free field theory** the informal Schrödinger-Feynman prescription can be replaced by a rigorous and functorial quantization scheme:

- For state spaces, the Schrödinger representation is replaced by the **holomorphic representation**, a flavor of **geometric quantization**.
- Additional data is required: One **complex structure** $J_{\Sigma} : L_{\Sigma} \to L_{\Sigma}$ per hypersurface.
- There is a **gluing anomaly**, modifying the gluing axiom **(T5b)** to $\diamond \rho_M = \rho_{M_1} \cdot c$
- Standard results in flat and globally hyperbolic spacetime are recovered.

Universal results in free field theory

[RO 2010; 2011; 2012]

For **free field theory** the informal Schrödinger-Feynman prescription can be replaced by a rigorous and functorial quantization scheme:

- For state spaces, the Schrödinger representation is replaced by the **holomorphic representation**, a flavor of **geometric quantization**.
- Additional data is required: One **complex structure** $J_{\Sigma} : L_{\Sigma} \to L_{\Sigma}$ per hypersurface.
- There is a **gluing anomaly**, modifying the gluing axiom **(T5b)** to $\diamond \rho_M = \rho_{M_1} \cdot c$
- Standard results in flat and globally hyperbolic spacetime are recovered.

Theorem

The quantum data satisfies the QFT axioms (possibly with some infinite gluing anomalies).

Robert Oeckl (CCM-UNAM)

Geometric quantization: Prequantization

Geometric quantization is designed to output the structures of the **standard formulation** of quantum theory, i.e., a Hilbert space of states and an operator algebra of observables acting on it. Its main input is the space *L* of solutions of the classical theory in spacetime with its symplectic structure ω . It proceeds roughly in two steps:

1 We consider a hermitian line bundle *B* over *L* with a connection ∇ that has curvature 2-form ω . Define the **prequantum** Hilbert space *H* as the space of square-integrable sections with inner product

$$\langle s',s\rangle = \int (s'(\eta),s(\eta))_{\eta} \,\mathrm{d}\mu(\eta).$$

Here the measure $d\mu$ is given by the 2*n*-form $\omega \land \cdots \land \omega$ if *L* has dimension 2*n*. Classical observables, i.e., functions on *L*, act naturally as operators on *H* with the "correct" commutation relations.

イロト イロト イヨト イヨト

Geometric quantization: Polarization

2 This Hilbert space is too large. Choose in each complexified tangent space $(T_{\phi}L)^{\mathbb{C}}$ a Lagrangian subspace P_{ϕ} with respect to ω_{ϕ} . We then restrict *H* to those sections *s* of *B* such that

$$\nabla_{\overline{X}}s=0,$$

if $X_{\phi} \in P_{\phi}$ for all $\phi \in L$. This is called a **polarization**. The subspace \mathcal{H} of H obtained in this way is the Hilbert space of states. Not all observables are well defined on it as they might not leave the subspace $\mathcal{H} \subseteq H$ invariant.

イロト イポト イヨト イヨト

Kähler polarization

We are interested in a **Kähler polarization**. Then P_{ϕ} is determined by a complex structure J_{ϕ} in $T_{\phi}L$ that is compatible with ω_{ϕ} . J_{ϕ} satisfies $J_{\phi} \circ J_{\phi} = -1$ and $\omega_{\phi}(J_{\phi}X, J_{\phi}Y) = \omega_{\phi}(X, Y)$. Then

$$P_{\phi} = \{ X \in (T_{\phi}L)^{\mathbb{C}} : iX = J_{\phi}X \}.$$

 J_{ϕ} yields a real inner product on $T_{\phi}L$:

$$g_{\phi}(X_{\phi}, Y_{\phi}) := 2\omega_{\phi}(X_{\phi}, J_{\phi}Y_{\phi}).$$

We shall require g_{ϕ} to be positive definite. We also obtain a complex inner product on $T_{\phi}L$ viewed as a complex vector space:

$$\{X_{\phi}, Y_{\phi}\}_{\phi} := g_{\phi}(X_{\phi}, Y_{\phi}) + 2\mathrm{i}\omega_{\phi}(X_{\phi}, Y_{\phi}).$$

The Hilbert space \mathcal{H} obtained from H through a Kähler polarization is also called the **holomorphic representation**.

Robert Oeckl (CCM-UNAM)

・ロト ・ 四 ト ・ 回 ト ・ 回 ト ・ 回

Linear field theory

To be able to deal with the field theory case where *L* is generically infinite-dimensional we restrict ourselves to the simplest setting of linear field theory. That is, we take *L* to be a real vector space and the symplectic form ω to be invariant under translations in *L*. Not much is known beyond this setting.

Then, *L* can be naturally identified with its tangent space. Moreover, the symplectic form ω , the complex structure *J*, the real and complex inner products *g*, $\{\cdot, \cdot\}$ all become structures on the vector space *L*. The line bundle *B* becomes trivial and its section (the elements of *H*) can be identified with complex functions on *L*. For a Kähler polarization the elements of the subspace $\mathcal{H} \subseteq H$ are precisely the **holomorphic** functions on *L*. Moreover, the inner product formula simplifies,

$$\langle \psi', \psi \rangle = \int \overline{\psi'(\eta)} \psi(\eta) \exp\left(-\frac{1}{2}g(\eta,\eta)\right) d\mu(\eta).$$

<ロト < 回 > < 回 > < 回 > < 三 > < 三 > < 三

The measure

What is the measure $d\mu$?

It turns out that on an infinite-dimensional vector space L no translation-invariant measure exists. Instead, we should look for a **Gaussian measure**

$$\mathrm{d}\nu \approx \exp\left(-\frac{1}{2}g(\eta,\eta)\right)\mathrm{d}\mu.$$

However, not even that exists on the Hilbert space *L*. The measure does exist if we extend *L* to a larger vector space \hat{L} . Concretely ν and \hat{L} can be constructed as an inductive limit of finite-dimensional quotient spaces of *L*. It turns out that \hat{L} can also be identified with the algebraic dual of the topological dual of *L*.

A priori, wave functions are thus really functions of \hat{L} rather than on L. But, a function that is square-integrable on \hat{L} and holomorphic is completely determined by its values on L. This allows us to "forget" about \hat{L} to some extent.

Robert Oeckl (CCM-UNAM)

Quantization: State spaces

For each hypersurface Σ the the complex structure J_{Σ} makes the space L_{Σ} into a complex Hilbert space with the inner product,

 $\{\phi',\phi\}_{\Sigma} := g_{\Sigma}(\phi',\phi) + 2i\omega_{\Sigma}(\phi',\phi) \text{ where } g_{\Sigma}(\phi',\phi) := 2\omega_{\Sigma}(\phi',J_{\Sigma}\phi).$

The Hilbert space of states \mathcal{H}_{Σ} is then the space of **holomorphic functions** on L_{Σ} with the inner product,

$$\langle \psi', \psi \rangle_{\Sigma} := \int_{\hat{L}_{\Sigma}} \overline{\psi'(\phi)} \psi(\phi) \, \mathrm{d} \nu_{\Sigma}(\phi).$$

where v_{Σ} is the **Gaussian measure**,

$$\mathrm{d}\nu_{\Sigma} \approx \exp\left(-\frac{1}{2}g_{\Sigma}(\eta,\eta)\right)\mathrm{d}\mu.$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Coherent States

The Hilbert spaces \mathcal{H}_{Σ} are reproducing kernel Hilbert spaces and contain **coherent states** of the form

$$K_{\xi}(\phi) = \exp\left(\frac{1}{2}\{\xi,\phi\}_{\Sigma}\right)$$

associated to classical solutions $\xi \in L_{\Sigma}$. They have the **reproducing property**,

$$\langle K_{\xi},\psi\rangle_{\Sigma}=\psi(\xi),$$

and satisfy the completeness relation

$$\langle \psi', \psi \rangle_{\Sigma} = \int_{\hat{L}_{\Sigma}} \langle \psi', K_{\xi} \rangle_{\Sigma} \langle K_{\xi}, \psi \rangle_{\Sigma} \, \mathrm{d} \nu_{\Sigma}(\xi).$$

They can be thought of as representing quantum states that approximate specific classical solutions.

Robert Oeckl (CCM-UNAM)

2018-05-30 13 / 23

イロト イポト イヨト イヨト 二日

Quantization: Amplitudes

For each region *M* we define the linear amplitude map $\rho_M : \mathcal{H}^{\circ}_{\partial M} \to \mathbb{C}$ by

$$\rho_M(\psi) := \int_{\hat{L}_M} \psi(\phi) \,\mathrm{d} \nu_M(\phi).$$

Here \hat{L}_M is an extension of L_M and ν_M is a Gaussian measure on \hat{L}_M , depending on $g_{\partial M}$ that heuristically takes the form

$$\mathrm{d}\nu_{M}\approx \exp\left(-\frac{1}{4}g_{\partial M}(\eta,\eta)\right)\mathrm{d}\mu$$

with μ a (fictitious) translation-invariant measure.

It can be shown that this prescription is here equivalent to the Feynman path integral prescription.

・ロト ・四ト ・ヨト ・ヨト

Universal amplitude formula

The amplitude can be written down in closed form. *M* a region. [RO 2010]

- $L_{\partial M} = L_M \oplus J_{\partial M}L_M$ is a **real orthogonal decomposition** into classically continuable (L_M) and non-continuable ($J_{\partial M}L_M$) solutions.
- Let $\xi \in L_{\partial M}$ be a solution on the boundary of M. Decompose $\xi = \xi^{c} + \xi^{n}$ into $\xi^{c} \in L_{M}$ and $\xi^{n} \in J_{\partial M}L_{M}$.

The amplitude for the associated normalized coherent state K_{ξ} is:

$$\rho_M(\tilde{K}_{\xi}) = \exp\left(i\,\omega_{\partial M}(\xi^n,\xi^c) - \frac{1}{2}g_{\partial M}(\xi^n,\xi^n)\right)$$

This has a simple and compelling physical interpretation.

Robert Oeckl (CCM-UNAM)

Local quantization

2018-05-30 15 / 23

イロト イポト イヨト イヨト

Observables: Coherent factorization (I)

[RO 2011]

- Consider a region *M* with observable $F : K_M \to \mathbb{R}$.
- Let $\xi \in L_{\partial M}$ with $\xi = \xi^{c} + \xi^{n}$ and $\xi^{c} \in L_{M}$, $\xi^{n} \in J_{\partial M}L_{M}$. Define $\hat{\xi} \in L_{M}^{\mathbb{C}}$ by $\hat{\xi} := \xi^{c} + iJ_{\partial M}\xi^{n}$.

Coherent factorization for normal ordered quantization

 $\rho_M^{:F:}\left(K_{\xi}\right) = \rho_M\left(K_{\xi}\right)F(\hat{\xi})$

Robert Oeckl (CCM-UNAM)

2018-05-30 16 / 23

> < E > < E

Observables: Coherent factorization (II)

[RO 2012]

- Let $F = \exp(iD)$ where $D : K_M \to \mathbb{R}$ is **linear**. Call F a Weyl observable.
- The action $S_M + D$ defines modified equations of motion. There is a unique solution η_D that is polarized on the boundary.

Coherent factorization for Weyl observables

$$\begin{split} \rho_{M}^{F}\left(K_{\xi}\right) &= \rho_{M}^{:F:}\left(K_{\xi}\right)\rho_{M}^{F}\left(K_{0}\right),\\ \rho_{M}^{F}\left(K_{0}\right) &= \exp\left(\frac{\mathrm{i}}{2}D(\eta_{\mathrm{D}})\right) \end{split}$$

▶ < ∃ ▶ < ∃ ▶</p>

General observables

More general observables, in particular polynomial ones, can be obtained through **derivatives** from Weyl observables. Let $D_1, \ldots D_n : K_M \to \mathbb{R}$ be linear. We are interested in quantizing the monomial observable $G := D_1 \cdots D_n$. We define the Weyl observable F, depending on real parameters $\lambda_1, \ldots, \lambda_n$,

$$F_{\lambda_1,\dots,\lambda_n} := \exp\left(i\sum_{k=1}^n \lambda_k D_k\right), \quad \text{so,}$$
$$G = (-i)^n \frac{\partial}{\partial \lambda_1} \cdots \frac{\partial}{\partial \lambda_n} F_{\lambda_1,\dots,\lambda_n} \Big|_{\lambda_1 = 0,\dots,\lambda_n = 0}$$

Since quantization is linear, this implies,

$$\rho_M^G = \left. (-\mathbf{i})^n \frac{\partial}{\partial \lambda_1} \cdots \frac{\partial}{\partial \lambda_n} \rho_M^{F_{\lambda_1, \dots, \lambda_n}} \right|_{\lambda_1 = 0, \dots, \lambda_n = 0}.$$

Robert Oeckl (CCM-UNAM)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

QFT in Minkowski spacetime (I)

Specialize to **quantum field theory (QFT) in Minkowski spacetime**. Consider the linear observable determined by a **source field** μ with support in a spacetime region *M*.

$$D(\phi) := \int \mu(x)\phi(x)\,\mathrm{d}x.$$

As before, the modified action $S_M + D$ yields modified equations of motions. These are here given by an **inhomogeneous PDE** with source μ . Recall the complexified special solution η_P satisfying **polarized boundary conditions**. Here these boundary conditions (encoded in the complex structure) are the **Feynman boundary conditions**. Therefore,

$$\eta_P(x) = \int G_F(x, x') \mu(x') \, \mathrm{d}x',$$

where G_F is the Feynman propagator.

イロト 不得 とくき とくき とうき

QFT in Minkowski spacetime (II)

For the Weyl observable $F := \exp(iD)$ we obtain from coherent factorization,

$$\rho_M^F(K_{\xi}) = \rho_M(K_{\xi})$$
$$\exp\left(i\int \mu(x)\hat{\xi}(x)\,\mathrm{d}x\right)\exp\left(\frac{i}{2}\int \mu(x)G_F(x,x')\mu(x')\,\mathrm{d}x\mathrm{d}x'\right).$$

In the special case where we take M to be a time-interval region $[t_{\text{in}}, t_{\text{out}}] \times \mathbb{R}^3$ and send $t_{\text{in}} \to -\infty$, $t_{\text{out}} \to \infty$ we recover the well known "generating function" or "kernel" of the S-matrix.

So the coherent factorization property is a vast generalization of this.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Non-linear field theories can be treated **perturbatively**. The corresponding methods from quantum field theory readily generalize. Thus, we consider the theory determined by a modified action $S_M + S_M^{int}$, where S_M^{int} is considered a perturbative correction. We may treat $G := \exp(iS_M^{int})$ simply as an **observable** and apply previous considerations.

・ロト ・聞 と ・ 国 と ・ 国 と … 国

Perturbation theory (II)

More specifically, for a potential term

$$S_M^{\text{int}}(\phi) = \int_M V(x,\phi(x)) \,\mathrm{d}x,$$

we may take advantage of its spacetime integral form. Define as before a linear observable determined by a source μ in M,

$$D_{\mu}(\phi) := \int \mu(x)\phi(x) \,\mathrm{d}x$$
 and $F_{\mu} := \exp(\mathrm{i}D_{\mu}).$

The interacting theory is then formally determined by the amplitude map,

$$\rho_M^G(\psi) = \exp\left(i\int V\left(x, -i\frac{\delta}{\delta\mu(x)}\right)dx\right)\rho_M^{F_{\mu}}(\psi)\Big|_{\mu=0}.$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Some extensions and applications

Extensions

- affine field theory [RO 2011]
- free fermionic field theory [RO 2012]
- abelian YM in Riemannian manifolds [H. Díaz-Marin, RO 2017]

Some extensions and applications

Extensions

- affine field theory [RO 2011]
- free fermionic field theory [RO 2012]
- abelian YM in Riemannian manifolds [H. Díaz-Marin, RO 2017]

Applications

- generalized S-matrix in Minkowski [D. Colosi, RO 2007; 2008]
- S-matrix for AdS [M. Dohse, RO 2015]
- Unruh effect [D. Colosi, D. Rätzel 2012]
- Casimir effect [D. Colosi in progress]
- QFT in various curved spacetimes [D. Colosi, M. Dohse, R. Banisch, F. Hellmann,...2009–]

• • = • • = •