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Quantization (canonical)

concept classical theory quantum theory

states phase space (L, ω) −→ Hilbert space H

observables functions on
phase space C(L)

−→ operator
algebra B(H)

quantization
condition

Poisson bracket {·, ·} −→ commutator [·, ·]
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Quantization (local)

concept classical theory quantum theory

states: per
hypersurface Σ

phase space (LΣ, ωΣ) −→ Hilbert space HΣ

observables:
per region M

functions KM → C

on configuration
space CM

−→ space of observable
maps OM ⊆ H⋆

∂M

quantization
condition

product of functions
CM × CN → CM∪N

−→ composition of
observable maps
OM × ON → OM∪N
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Schrödinger-Feynman quantization: hypersurfaces

Topological quantum field theory was originally inspired by the
Feynman path integral and its composition properties. The Feynman
path integral is defined in the Schrödinger representation where
states are wave functions on field configurations.

The state space HΣ for the hypersurface Σ is the space of complex
functions on KΣ with inner product,

⟨ψ ′, ψ⟩Σ =

∫
KΣ

Dφ ψ ′(φ)ψ(φ).

Here, Dφ is a translation invariant measure on KΣ.

Such a measure does not exist in most cases. As usual, it is fruitful to proceed
pretending that it does.
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Schrödinger-Feynman quantization: regions

The Feynman path integral serves to define the amplitude map
ρM : H∂M → C in a spacetime region M,

ρM(ψ) =

∫
ϕ∈KM

Dϕ ψ(ϕ|∂M) e iSM(ϕ).

Similarly, it defines the observable map ρO
M : H∂M → C for observable

O : KM → R in region M,

ρO
M(ψ) =

∫
ϕ∈KM

Dϕ ψ(ϕ|∂M)O(ϕ) e iSM(ϕ).

Again, the measure Dϕ does not actually exist in most cases.

These quantum data “automatically” satisfy the quantum axioms.
Problem: This is not well defined.
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Universal results in free field theory
[RO 2010; 2011; 2012]
For free field theory the informal Schrödinger-Feynman prescription
can be replaced by a rigorous and functorial quantization scheme:

For state spaces, the Schrödinger representation is replaced by the
holomorphic representation, a flavor of geometric quantization.
Additional data is required: One complex structure JΣ : LΣ → LΣ

per hypersurface.
There is a gluing anomaly, modifying the gluing axiom (T5b) to
⋄ρM = ρM1 · c
Standard results in flat and globally hyperbolic spacetime are
recovered.

Theorem
The quantum data satisfies the QFT axioms (possibly with some
infinite gluing anomalies).
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Geometric quantization: Prequantization

Geometric quantization is designed to output the structures of the
standard formulation of quantum theory, i.e., a Hilbert space of states
and an operator algebra of observables acting on it. Its main input is
the space L of solutions of the classical theory in spacetime with its
symplectic structure ω. It proceeds roughly in two steps:

1 We consider a hermitian line bundle B over L with a connection ∇
that has curvature 2-form ω. Define the prequantum Hilbert space
H as the space of square-integrable sections with inner product

⟨s′, s⟩ =
∫

(s′(η), s(η))η dµ(η).

Here the measure dµ is given by the 2n-form ω ∧ · · · ∧ ω if L has
dimension 2n. Classical observables, i.e., functions on L, act
naturally as operators on H with the “correct” commutation
relations.
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Geometric quantization: Polarization

2 This Hilbert space is too large. Choose in each complexified
tangent space (TϕL)C a Lagrangian subspace Pϕ with respect to
ωϕ. We then restrict H to those sections s of B such that

∇X s = 0,

if Xϕ ∈ Pϕ for all ϕ ∈ L. This is called a polarization. The subspace
H of H obtained in this way is the Hilbert space of states. Not all
observables are well defined on it as they might not leave the
subspace H ⊆ H invariant.
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Kähler polarization

We are interested in a Kähler polarization. Then Pϕ is determined by a
complex structure Jϕ in TϕL that is compatible with ωϕ. Jϕ satisfies
Jϕ ◦ Jϕ = −1 and ωϕ(JϕX, JϕY) = ωϕ(X,Y). Then

Pϕ = {X ∈ (TϕL)C : iX = JϕX}.

Jϕ yields a real inner product on TϕL:

gϕ(Xϕ,Yϕ) := 2ωϕ(Xϕ, JϕYϕ).

We shall require gϕ to be positive definite. We also obtain a complex
inner product on TϕL viewed as a complex vector space:

{Xϕ,Yϕ}ϕ := gϕ(Xϕ,Yϕ) + 2iωϕ(Xϕ,Yϕ).

The Hilbert space H obtained from H through a Kähler polarization is
also called the holomorphic representation.
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Linear field theory
To be able to deal with the field theory case where L is generically
infinite-dimensional we restrict ourselves to the simplest setting of
linear field theory. That is, we take L to be a real vector space and the
symplectic form ω to be invariant under translations in L. Not much is
known beyond this setting.

Then, L can be naturally identified with its tangent space. Moreover,
the symplectic form ω, the complex structure J, the real and complex
inner products g, {·, ·} all become structures on the vector space L. The
line bundle B becomes trivial and its section (the elements of H) can be
identified with complex functions on L. For a Kähler polarization the
elements of the subspace H ⊆ H are precisely the holomorphic
functions on L. Moreover, the inner product formula simplifies,

⟨ψ ′, ψ⟩ =
∫

ψ ′(η)ψ(η) exp
(
−1
2

g(η, η)
)

dµ(η).
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The measure
What is the measure dµ?
It turns out that on an infinite-dimensional vector space L no
translation-invariant measure exists. Instead, we should look for a
Gaussian measure

dν ≈ exp
(
−1
2

g(η, η)
)

dµ.

However, not even that exists on the Hilbert space L. The measure does
exist if we extend L to a larger vector space L̂. Concretely ν and L̂ can
be constructed as an inductive limit of finite-dimensional quotient
spaces of L. It turns out that L̂ can also be identified with the algebraic
dual of the topological dual of L.

A priori, wave functions are thus really functions of L̂ rather than on L.
But, a function that is square-integrable on L̂ and holomorphic is
completely determined by its values on L. This allows us to “forget”
about L̂ to some extent.
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Quantization: State spaces

For each hypersurface Σ the the complex structure JΣ makes the space
LΣ into a complex Hilbert space with the inner product,

{ϕ′, ϕ}Σ := gΣ(ϕ′, ϕ) + 2iωΣ(ϕ
′, ϕ) where gΣ(ϕ′, ϕ) := 2ωΣ(ϕ

′, JΣϕ).

The Hilbert space of states HΣ is then the space of holomorphic
functions on LΣ with the inner product,

⟨ψ ′, ψ⟩Σ :=

∫
L̂Σ

ψ ′(ϕ)ψ(ϕ)dνΣ(ϕ).

where νΣ is the Gaussian measure,

dνΣ ≈ exp
(
−1
2

gΣ(η, η)
)

dµ.
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Coherent States

The Hilbert spaces HΣ are reproducing kernel Hilbert spaces and
contain coherent states of the form

Kξ(ϕ) = exp
(
1

2
{ξ, ϕ}Σ

)
associated to classical solutions ξ ∈ LΣ. They have the reproducing
property,

⟨Kξ, ψ⟩Σ = ψ(ξ),

and satisfy the completeness relation

⟨ψ ′, ψ⟩Σ =

∫
L̂Σ

⟨ψ ′,Kξ ⟩Σ⟨Kξ, ψ⟩Σ dνΣ(ξ).

They can be thought of as representing quantum states that
approximate specific classical solutions.
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Quantization: Amplitudes

For each region M we define the linear amplitude map ρM : H ◦
∂M → C

by

ρM(ψ) :=

∫
L̂M

ψ(ϕ)dνM(ϕ).

Here L̂M is an extension of LM and νM is a Gaussian measure on L̂M,
depending on g∂M that heuristically takes the form

dνM ≈ exp
(
−1
4

g∂M(η, η)

)
dµ

with µ a (fictitious) translation-invariant measure.

It can be shown that this prescription is here equivalent to the
Feynman path integral prescription.
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Universal amplitude formula

The amplitude can be written down in closed form. M a region.
[RO 2010]

L∂M = LM ⊕ J∂MLM is a real orthogonal decomposition into
classically continuable (LM) and non-continuable (J∂MLM)
solutions.
Let ξ ∈ L∂M be a solution on the boundary of M. Decompose
ξ = ξc + ξn into ξc ∈ LM and ξn ∈ J∂MLM.

The amplitude for the associated normalized coherent state K̃ξ is:

ρM(K̃ξ) = exp
(
iω∂M(ξn, ξc) − 1

2
g∂M(ξn, ξn)

)
This has a simple and compelling physical interpretation.
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Observables: Coherent factorization (I)

[RO 2011]

Consider a region M with observable F : KM → R.
Let ξ ∈ L∂M with ξ = ξc + ξn and ξc ∈ LM, ξn ∈ J∂MLM. Define
ξ̂ ∈ LCM by ξ̂ := ξc + iJ∂Mξ

n.

Coherent factorization for normal ordered quantization

ρ:F:M
(
Kξ

)
= ρM

(
Kξ

)
F(ξ̂)
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Observables: Coherent factorization (II)

[RO 2012]

Let F = exp(iD) where D : KM → R is linear. Call F a Weyl
observable.
The action SM + D defines modified equations of motion. There is
a unique solution ηD that is polarized on the boundary.

Coherent factorization for Weyl observables

ρF
M

(
Kξ

)
= ρ:F:M

(
Kξ

)
ρF

M (K0) ,

ρF
M (K0) = exp

(
i
2

D(ηD)

)
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General observables
More general observables, in particular polynomial ones, can be
obtained through derivatives from Weyl observables. Let
D1, . . .Dn : KM → R be linear. We are interested in quantizing the
monomial observable G := D1 · · ·Dn. We define the Weyl observable F,
depending on real parameters λ1, . . . , λn,

Fλ1,...,λn := exp
(
i

n∑
k=1

λkDk

)
, so,

G = (−i)n ∂

∂λ1
· · · ∂

∂λn
Fλ1,...,λn

����
λ1=0,...,λn=0

.

Since quantization is linear, this implies,

ρG
M = (−i)n ∂

∂λ1
· · · ∂

∂λn
ρ

Fλ1, . . .,λn
M

����
λ1=0,...,λn=0

.
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QFT in Minkowski spacetime (I)

Specialize to quantum field theory (QFT) in Minkowski spacetime.
Consider the linear observable determined by a source field µ with
support in a spacetime region M.

D(ϕ) :=

∫
µ(x)ϕ(x)dx.

As before, the modified action SM + D yields modified equations of
motions. These are here given by an inhomogeneous PDE with source
µ. Recall the complexified special solution ηP satisfying polarized
boundary conditions. Here these boundary conditions (encoded in
the complex structure) are the Feynman boundary conditions.
Therefore,

ηP(x) =
∫

GF(x, x′)µ(x′)dx′,

where GF is the Feynman propagator.
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QFT in Minkowski spacetime (II)

For the Weyl observable F := exp(iD) we obtain from coherent
factorization,

ρF
M(Kξ) = ρM(Kξ)

exp
(
i
∫

µ(x)ξ̂(x)dx
)

exp
(

i
2

∫
µ(x)GF(x, x′)µ(x′)dxdx′

)
.

In the special case where we take M to be a time-interval region
[tin, tout] × R3 and send tin → −∞, tout → ∞ we recover the well known
“generating function” or “kernel” of the S-matrix.

So the coherent factorization property is a vast generalization of this.
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Perturbation theory (I)

Non-linear field theories can be treated perturbatively. The
corresponding methods from quantum field theory readily generalize.
Thus, we consider the theory determined by a modified action
SM + Sint

M , where Sint
M is considered a perturbative correction. We may

treat G := exp(iSint
M ) simply as an observable and apply previous

considerations.
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Perturbation theory (II)

More specifically, for a potential term

Sint
M (ϕ) =

∫
M

V(x, ϕ(x))dx,

we may take advantage of its spacetime integral form. Define as before
a linear observable determined by a source µ in M,

Dµ(ϕ) :=

∫
µ(x)ϕ(x)dx and Fµ := exp(iDµ).

The interacting theory is then formally determined by the amplitude
map,

ρG
M(ψ) = exp

(
i
∫

V
(
x,−i δ

δµ(x)

)
dx

)
ρ

Fµ

M (ψ)

����
µ=0

.
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Some extensions and applications

Extensions
affine field theory [RO 2011]
free fermionic field theory [RO 2012]
abelian YM in Riemannian manifolds [H. Díaz-Marin, RO 2017]

Applications
generalized S-matrix in Minkowski [D. Colosi, RO 2007; 2008]
S-matrix for AdS [M. Dohse, RO 2015]
Unruh effect [D. Colosi, D. Rätzel 2012]
Casimir effect [D. Colosi in progress]
QFT in various curved spacetimes [D. Colosi, M. Dohse, R. Banisch,
F. Hellmann,…2009–]
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