The positive formalism: spacetime and locality

Robert Oeckl

Centro de Ciencias Matemáticas Universidad Nacional Autónoma de México Morelia, Mexico

Seminar *General Boundary Formulation* 14 February 2018

(Abstract) Positive Formalism

Obtain an **axiomatic framework** for encoding physical theories with:

- types
 - a collection of process types
 - a collections of interface types
 - a **boundary map** from process types to interface types $M \mapsto \partial M$
- objects
 - a partially ordered vector space of **probes** \mathcal{P}_M per process type M
 - a partially ordered vector space of generalized boundary conditions B_Σ per interface type Σ
- compositions
 - ▶ **decomposition** of interface types $\Sigma = \Sigma_1 \cup \cdots \cup \Sigma_n$ with associated positive isomorphism $\mathcal{B}_{\Sigma_1} \otimes \cdots \otimes \mathcal{B}_{\Sigma_n} \to \mathcal{B}_{\Sigma}$
 - ► **composition** of process types *M* and *N* to $M \cup N$ and probes $\diamond : \mathcal{P}_M \times \mathcal{P}_N \to \mathcal{P}_{M \cup N}$
- values: positive pairings $[\![\cdot,\cdot]\!]_M:\mathcal{P}_M\times\mathcal{B}_{\partial M}\to\mathbb{R}$

Measurement probabilities

For process type M consider the probe $P(*) \in \mathcal{P}_{M}^{+}$ encoding a measurement device and P(g) encoding in addition a selected outcome.

Given $b \in \mathcal{B}_{\partial M}^+$ the **probability** Π for an affirmative outcome is:

$$\Pi = \frac{[\![P(g), b]\!]_M}{[\![P(*), b]\!]_M}$$

Since $0 \le P(g) \le P(*)$ we have $0 \le \Pi \le 1$ (if $[P(*), b]_M \ne 0$).

An example

M_1 : light

- ▶ P(*) (apparatus)
- P(r) (light red)
- P(g) (light green)

M_2 : switch

- Q(A) (position A)
- Q(B) (position B)

M_3 : meter

- ► *R*[*] (apparatus)
- ightharpoonup R[a,b] (range [a,b])
- ► R (reading)

5 / 12

5 / 12

Adding spacetime and locality

Spacetime locality provides a powerful organizing principle. Processes only interface with adjacent processes. This decreases considerably the inter-connectivity of the graph.

Adding spacetime and locality

Spacetime locality provides a powerful organizing principle. Processes only interface with adjacent processes. This decreases considerably the inter-connectivity of the graph.

We associate a spacetime region to any process and a hypersurface to any interface. These form a dual complex to the graph of boxes and links.

Adding spacetime and locality

We may forget about the graph and identify process types with regions and interface types with hypersurfaces.

This framework is called the **local positive formalism**.

TQFT - manifolds

Fix dimension *d*. Manifolds are **oriented** and may carry **additional structure**: differentiable, metric, complex, etc.

region M

d-manifold with boundary.

hypersurface Σ

d - 1-manifold with boundary, with germ of d-manifold.

slice region $\hat{\Sigma}$

d-1-manifold with boundary, with germ of d-manifold, interpreted as "infinitely thin" region.

positive TQFT – axioms I

Manifolds need not be oriented.

(P1) per hypersurface Σ

A partially ordered vector space \mathcal{B}_{Σ} .

(P4) per region M

A partially ordered vector space \mathcal{P}_M of linear maps $\mathcal{B}_{\partial M} \to \mathbb{R}$. $\mathcal{P}_M^+ \subset \mathcal{P}_M$ are **positive maps**. A **unit** $\square_M \in \mathcal{P}_M^+$.

The choice of an element of \mathcal{P}_M for a region M is indicated by a **label**.

positive TQFT – axioms II

(P2) per hypersurface decomposition

$$\Sigma = \Sigma_1 \cup \Sigma_2$$

A positive vector space isomorphism $\tau: \mathcal{B}_{\Sigma_1} \otimes \mathcal{B}_{\Sigma_2} \to \mathcal{B}_{\Sigma}$.

(P3x) per hypersurface Σ

The unit gives rise to a **positive-definite** sharply positive inner product $(\psi, \eta)_{\Sigma} := \boxtimes_{\hat{\Sigma}} \circ \tau(\psi \otimes \eta).$

positive TQFT – axioms III

(P5a) per disjoint composition of regions $M = M_1 \sqcup M_2$

 $\diamond: \mathcal{P}_{M_1} \times \mathcal{P}_{M_2} \to \mathcal{P}_M$ given by $(P_1 \diamond P_2)(\tau(\psi_1 \otimes \psi_2)) = P_1(\psi_1)P_2(\psi_2)$. Also $\square_{M_1} \diamond \square_{M_2} = \square_M$.

(P5b) per self-composition of region M to M_1 along Σ

 $\diamond: \mathcal{P}_M \to \mathcal{P}_{M_1}$ given by $(\diamond P)(\psi) = \sum_k P(\tau(\psi \otimes \xi_k \otimes \xi_k)). \diamond \square_M = \square_{M_1}.$

Here, $\{\xi_k\}_{k\in I}$ is an orthonormal basis of \mathcal{B}_{Σ} .

Main reference

R. O., A local and operational framework for the foundations of physics, arXiv:1610.09052.