The positive formalism: time and evolution

Robert Oeckl

Centro de Ciencias Matemáticas Universidad Nacional Autónoma de México Morelia, Mexico

Seminar *General Boundary Formulation* 21 February 2018

The positive formalism: An example

M_1 : light

- ► *P*(*) (apparatus)
- P(r) (light red)
- P(g) (light green)

*M*₂: switch

- ightharpoonup Q(A) (position A)
- Q(B) (position B)

M_3 : meter

- ► *R*[*] (apparatus)
- ightharpoonup R[a,b] (range [a,b])
- ► R (reading)

Adding spacetime and locality

Spacetime locality provides a powerful organizing principle. Processes only interface with adjacent processes. This decreases considerably the inter-connectivity of the graph.

Adding spacetime and locality

Spacetime locality provides a powerful organizing principle. Processes only interface with adjacent processes. This decreases considerably the inter-connectivity of the graph.

We associate a spacetime region to any process and a hypersurface to any interface. These form a dual complex to the graph of boxes and links.

Adding spacetime and locality

We may forget about the graph and identify process types with regions and interface types with hypersurfaces.

This framework is called the **local positive formalism**.

Time-evolution

Specialize to a global factorizing spacetime $\mathbb{R} \times \Sigma$ and restrict the spacetime system to **equal-time hyperplanes** Σ_t and **time-interval regions** $[t_1, t_2] = [t_1, t_2] \times \Sigma$.

Write $\mathcal{B}_t := \mathcal{B}_{\Sigma_t}$ and call this the (generalized) **state space** at time t.

Time-evolution

Specialize to a global factorizing spacetime $\mathbb{R} \times \Sigma$ and restrict the spacetime system to **equal-time hyperplanes** Σ_t and **time-interval regions** $[t_1, t_2] = [t_1, t_2] \times \Sigma$.

Write $\mathcal{B}_t := \mathcal{B}_{\Sigma_t}$ and call this the (generalized) **state space** at time t.

Consider probe $P \in \mathcal{P}_{[t_1,t_2]}$. Define the **probe map** $\tilde{P} : \mathcal{B}_{t_1} \to \mathcal{B}_{t_2}$ via

$$[b_2, \tilde{P}(b_1)]_{t_2} = [P, b_1 \otimes b_2]_{[t_1, t_2]}, \quad \forall b_1 \in \mathcal{B}_{t_1}, b_2 \in \mathcal{B}_{t_2}.$$

Time-evolution

Specialize to a global factorizing spacetime $\mathbb{R} \times \Sigma$ and restrict the spacetime system to **equal-time hyperplanes** Σ_t and **time-interval regions** $[t_1, t_2] = [t_1, t_2] \times \Sigma$.

Write $\mathcal{B}_t := \mathcal{B}_{\Sigma_t}$ and call this the (generalized) **state space** at time t.

Consider probe $P \in \mathcal{P}_{[t_1,t_2]}$. Define the **probe map** $\tilde{P} : \mathcal{B}_{t_1} \to \mathcal{B}_{t_2}$ via

$$[b_2, \tilde{P}(b_1)]_{t_2} = [P, b_1 \otimes b_2]_{[t_1, t_2]}, \quad \forall b_1 \in \mathcal{B}_{t_1}, b_2 \in \mathcal{B}_{t_2}.$$

That is, $\tilde{P}(b) = \sum_{k \in I} \llbracket P, b \otimes \xi_k \rrbracket_{[t_1, t_2]} \xi_k$.

Primitive probe maps and positivity

Probe maps for **primitive probes** are **positive**. They map proper states to proper states, $\mathcal{B}_{t_1}^+ \to \mathcal{B}_{t_2}^+$. They even have the stronger property of **boundary positivity**,

$$\sum_{i} (c_i, \tilde{P}(b_i))|_{t_2} \ge 0 \quad \text{if} \quad \sum_{i} b_i \otimes c_i \in \mathcal{B}^+_{\partial[t_1, t_2]} \supseteq \mathcal{B}^+_{t_1} \otimes \mathcal{B}^+_{t_2}$$

Primitive probe maps and positivity

Probe maps for **primitive probes** are **positive**. They map proper states to proper states, $\mathcal{B}_{t_1}^+ \to \mathcal{B}_{t_2}^+$. They even have the stronger property of **boundary positivity**,

$$\sum_{i} (c_i, \tilde{P}(b_i))|_{t_2} \ge 0 \quad \text{if} \quad \sum_{i} b_i \otimes c_i \in \mathcal{B}_{\partial[t_1, t_2]}^+ \supseteq \mathcal{B}_{t_1}^+ \otimes \mathcal{B}_{t_2}^+$$

In classical theory, positivity and boundary positivity are equivalent.

In quantum theory, boundary positivity is **complete positivity**.

Time-evolution maps

The probe map associated to the **null-probe** is the **time-evolution map** $T_{[t_1,t_2]}: \mathcal{B}_{t_1} \to \mathcal{B}_{t_2}$,

$$[b_2, T_{[t_1, t_2]}(b_1)]_{t_2} = [\![\varnothing, b_1 \otimes b_2]\!]_{[t_1, t_2]}$$

The time-evolution maps compose for $t_1 \le t_2 \le t_3$ as,

$$T_{[t_1,t_3]} = T_{[t_3,t_2]} \circ T_{[t_1,t_2]}.$$

Time-evolution maps

The probe map associated to the **null-probe** is the **time-evolution map** $T_{[t_1,t_2]}: \mathcal{B}_{t_1} \to \mathcal{B}_{t_2}$,

$$(b_2,T_{[t_1,t_2]}(b_1))_{t_2}=[\![\varnothing,b_1\otimes b_2]\!]_{[t_1,t_2]}$$

The time-evolution maps compose for $t_1 \le t_2 \le t_3$ as,

$$T_{[t_1,t_3]} = T_{[t_3,t_2]} \circ T_{[t_1,t_2]}.$$

Usually, time-evolution preserves the state space. Thus, $\mathcal{B} = \mathcal{B}_t$. Probe maps become **operators** on \mathcal{B} . Assume this from now on.

Many systems are also **time-translation symmetric** meaning that $T_{[t_1,t_1+\Delta]}=T_{[t_2,t_2+\Delta]}=T_{\Delta}$. We then get a **one-parameter semigroup** of boundary positive operators,

$$T_{\Delta_1 + \Delta_2} = T_{\Delta_1} \circ T_{\Delta_2}.$$

State "collapse" and Bayesian updating

Consider two consecutive measurements with initial state **b** and final state x. Suppose we have binary outcomes with probes,

- $Q_r + Q_g = Q_*$ $P_r + P_g = P_*$

Predict probability for Q_r in the second measurement:

Outcome of *P* unknown:

$$\Pi(Q_r) = \frac{\langle x, Q_r P_* b \rangle}{\langle x, \tilde{Q}_* \tilde{P}_* b \rangle}$$

Outcome P_r :

$$\Pi(Q_r|P_r) = \frac{\langle x, \tilde{Q}_r \tilde{P}_r b \rangle}{\langle x, \tilde{Q}_* \tilde{P}_r b \rangle}$$

Outcome P_{φ} :

$$\Pi(Q_r|P_g) = \frac{(x, \tilde{Q}_*\tilde{P}_g b)}{(x, \tilde{Q}_*\tilde{P}_g b)}$$

State "collapse" and Bayesian updating

Consider two consecutive measurements with initial state b and final state x. Suppose we have binary outcomes with probes,

- $Q_r + Q_g = Q_*$
- $P_r + P_g = P$

Predict probability for Q_r in the second measurement:

$$\Pi(Q_r) = \frac{\langle x, Q_r c \rangle}{\langle x, \tilde{Q}_* c \rangle} \quad \text{with} \quad c = \tilde{P}_* b$$

Outcome
$$P_r$$
:

$$\Pi(Q_r|P_r) = \frac{(x, Q_r c)}{(x, \tilde{Q}_* c)} \quad \text{with} \quad c = \tilde{P}_r b$$

Outcome
$$P_g$$
:

$$\Pi(Q_r|P_g) = \frac{(x, \tilde{Q}_r c)}{(x, \tilde{Q}_* c)} \quad \text{with} \quad c = \tilde{P}_g b$$

State "collapse" and Bayesian updating

The outcome of P can be conveniently encoded in the state c. We may say:

"The *P* measurement causes the state *b* to collapse to either $c = \tilde{P}_r b$ or $c = \tilde{P}_g b$."

Predict probability for Q_r in the second measurement:

$$\Pi(Q_r) = \frac{\langle x, Q_r c \rangle}{\langle x, \tilde{Q}_* c \rangle} \quad \text{with} \quad c = \tilde{P}_* b$$

Outcome
$$P_r$$
:

$$\Pi(Q_r|P_r) = \frac{\langle x, \tilde{Q}_r c \rangle}{\langle x, \tilde{Q}_* c \rangle} \quad \text{with} \quad c = \tilde{P}_r b$$

Outcome
$$P_g$$
:

$$\Pi(Q_r|P_g) = \frac{(x, \tilde{Q}_r c)}{(x, \tilde{Q}_* c)} \quad \text{with} \quad c = \tilde{P}_g b$$

The state of maximal uncertainty

Recall that the **boundary conditions** form a **hierarchy of generality**.

We assume that there exists a state $\mathbf{e} \in \mathcal{B}^+$ that is maximally general, call this the **state of maximal uncertainty**. This encodes a complete lack of knowledge.

The state of maximal uncertainty

Recall that the **boundary conditions** form a **hierarchy of generality**.

We assume that there exists a state $\mathbf{e} \in \mathcal{B}^+$ that is maximally general, call this the **state of maximal uncertainty**. This encodes a complete lack of knowledge.

Mathematically, for any $b \in \mathcal{B}^+$ there exists $\lambda > 0$ such that $b \leq \lambda \mathbf{e}$. This is called an **order unit**.

The state of maximal uncertainty

Recall that the **boundary conditions** form a **hierarchy of generality**.

We assume that there exists a state $\mathbf{e} \in \mathcal{B}^+$ that is maximally general, call this the **state of maximal uncertainty**. This encodes a complete lack of knowledge.

Mathematically, for any $b \in \mathcal{B}^+$ there exists $\lambda > 0$ such that $b \leq \lambda \mathbf{e}$. This is called an **order unit**.

Most often in a measurement, we are only interested in the outcome given a fixed initial state b_1 , but do not care about the state after the measurement.

This is encoded by setting the final state $b_2 = \mathbf{e}$.

Measurement without post-selection

Consider a binary measurement in $[t_1, t_2]$ encoded by a **non-selective probe** Q and a **selective probe** P.

The probability Π for an affirmative outcome given an initial state $b \in \mathcal{B}$, but disregarding the final fate of the system is thus,

$$\Pi = \frac{\llbracket P, b \otimes \mathbf{e} \rrbracket_{[t_1, t_2]}}{\llbracket Q, b \otimes \mathbf{e} \rrbracket_{[t_1, t_2]}} = \frac{\langle \mathbf{e}, \tilde{P}(b) \rangle}{\langle \mathbf{e}, \tilde{Q}(b) \rangle}.$$

One also says that this is a measurement without post-selection.

11 / 12

Main reference

R. O., A local and operational framework for the foundations of physics, arXiv:1610.09052.