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The convex operational framework

We adopt a time-evolution picture of physics.
To a system associate a space B of (generalized) states.
The system evolves through transformations P : B → B. These
may involve measurements, observations, interventions.

x

M

b1

b2

t1

t2
P

Here, b2 = P(b1).
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The state space

The (generalized) state space B is a partially ordered vector space
with positive cone B+ ⊆ B.
B carries a positive-definite, sharply positive inner product L·, ·M.
There is a special state of maximal uncertainty e ∈ B+. It encodes
complete lack of knowledge. It is an order unit.
For b ∈ B+, ∥b∥ = Lb, eM defines a norm. If b , 0 then ∥b∥ > 0.
Denote the normalized elements of B+ by B1. These are called
proper states. We denote B≤1 ⊆ B+ the positive elements with
norm less or equal to 1.
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Transformations

The (generalized) space of transformations P is a partially
ordered vector space with positive cone P+ ⊆ P.
A (generalized) transformation P is a map P : B → B. If P ∈ P+,
then P(B+) ⊆ B+.
If moreover, P(B≤1) ⊆ B≤1 we say that P is a proper
transformation.
If even P(B1) ⊆ B1 we say that P is non-selective. Otherwise it is
called selective.
For a time-interval [t1, t2] there is a special non-selective
transformation T[t1,t2] that encodes the free time-evolution of the
system. This also preserves the inner product.

Robert Oeckl (CCM-UNAM) the convex operational framework 2018-03-21 5 / 20



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Measurement (without post-selection)
To encode a measurement with n possible outcomes we need n
selective transformations P1, . . . ,Pn such that the sum
P = P1 + · · ·+ Pn is a non-selective transformation.

x

M

b

e

t1

t2
P

The probability Πk for the outcome k given an initial state b ∈ B1,

Πk = Le,Pk(b)M = ∥Pk(b)∥.
The final state of the system after the measurement with outcome k is,

b′ =
Pk(b)
∥Pk(b)∥

.
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Expectation values

Suppose we associate with measurement outcome n the measured
value λn ∈ R. We form the generalized transformation
P̂ := λ1P1 + · · ·+ λnPn. Then, the expectation value of the
measurement is given by,

⟨P̂⟩b =
n∑

k=1

λkΠk =
n∑

k=1

λkLe,Pk(b)M = Le, P̂(b)M.
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Classical mechanics

To a system we associate a phase space L of initial data. This
provides a complete description of physics at an instant of time.
The phase space carries a symplectic structure ω.

A Hamiltonian function H : L → R determines a flow XH on
phase space via,

dH(Y) = 2ω(Y,XH).

This determines the infinitesimal time-evolution on L.
Exponentiation yields finite time-evolution maps v[t1,t2] : L → L
given by v[t1,t2](x) = exp((t2 − t1)XH)x. These are
symplectomorphisms.
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Observables

An observable O is a function O : L → R. It provides the value of
a measurement on the system.
Let S ⊆ L and χS : L → R the characteristic function

χS(x) =
{
1 if x ∈ S
0 if x < S

.

Then χS is the observable that tells us if we are in the subset S of
the phase space.
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Classical statistical mechanics

In classical statistical mechanics a state is a statistical distribution on
phase space.

We introduce a reference probability measure µ on L and model states
as functions. If L has dimension 2n, then a suitable measure is ω∧n.

Let B be the space of real valued functions on L (with suitable
regularity properties). This is a partially ordered vector space. B+ is
the set of positive functions, i.e., functions that take non-negative
values everywhere.

The overall probability associated to a distribution b : L → R+0 is its
integral,

∥b∥ :=
∫

|b(x)| dµ(x).

(This defines the L1-norm on B.)
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Classical statistical mechanics

A proper state must yield total probability 1, so we require ∥b∥ = 1.
This defines B1 ⊆ B+ (and B≤1).

e = 1 the constant function with value 1 is an order unit
(supposing functions are bounded). It encodes the uniform
statistical distribution. It can be interpreted as the state of
minimal knowledge, i.e., maximal uncertainty.Lb, cM = ∫

b(x)c(x)dµ(x) the L2 inner product is a natural
positive-definite, sharply positive inner product on B.
For b ∈ B+ we have ∥b∥ = Le, bM.

Time-evolution of distributions is, (T[t1,t2](b))(x) = b(v−1
[t1,t2]

(x)) . This is
a non-selective transformation that leaves the inner product invariant
(if the measure is invariant under time-evolution).
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Measurement
O : L → R an observable. Its expectation value in a state b ∈ B1 is,

⟨O⟩b =
∫

O(x)b(x)dµ(x).

We introduce the (generalized) transformation Õ : B → B given by,
(Õ(b))(x) := O(x)b(x). Then,

⟨O⟩b = Le, Õ(b)M.
Suppose O takes values λ1 . . . , λn on S1, . . . , Sn with L = S1 ⊔ . . . ⊔ Sn.
That is, O =

∑n
k=1 λkχSk . Note that χ̃Sk is selective while

∑n
k=1 χ̃Sk = id

is non-selective. The probability for measuring λk (outcome k) is,

Πk = Le, χ̃Sk(b)M = ∥ χ̃Sk(b)∥.
After the measurement the state is updated to

b′ =
χ̃Sk(b)

∥ χ̃Sk(b)∥
.
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Suppose O takes values λ1 . . . , λn on S1, . . . , Sn with L = S1 ⊔ . . . ⊔ Sn.
That is, O =

∑n
k=1 λkχSk . Note that χ̃Sk is selective while

∑n
k=1 χ̃Sk = id

is non-selective. The probability for measuring λk (outcome k) is,

Πk = Le, χ̃Sk(b)M = ∥ χ̃Sk(b)∥.
After the measurement the state is updated to

b′ =
χ̃Sk(b)

∥ χ̃Sk(b)∥
.

Robert Oeckl (CCM-UNAM) the convex operational framework 2018-03-21 12 / 20



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Measurement
O : L → R an observable. Its expectation value in a state b ∈ B1 is,

⟨O⟩b =
∫

O(x)b(x)dµ(x).

We introduce the (generalized) transformation Õ : B → B given by,
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Quantum mechanics

To a system we associate a complex Hilbert space H .
A self-adjoint Hamiltonian operator H : H → H determines
infinitesimal time-evolution on H via the Schrödinger equation,

∂

∂t
ψ = −iHψ, for ψ ∈ H .

The operator describing time-evolution in the interval [t1, t2] is
U[t1,t2] = exp(−i(t2 − t1)H). It is unitary.
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Observables and measurement

An observable is a self-adjoint operator O : H → H .

Measuring an observable in a state ψ yields the expectation value,

⟨O⟩ψ = ⟨ψ,Oψ⟩H .

Suppose O =
∑n

k=1 λkPk, where Pk are orthogonal projection operators.
The probability for obtaining the measurement result λk is,

Πk = ⟨ψ,Pkψ⟩H = ∥Pkψ∥2H .

After the measurement, the state “collapses to”

ψ ′ =
Pkψ

∥Pkψ∥H
.
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Quantum statistical mechanics

The (generalized) state space is the space B of self-adjoint operators
on H . This is a partially ordered vector space with positive cone B+

the positive operators.

To an element ψ ∈ H we associate in B+ the projector on the subspace
spanned by ψ. Such an element of B+ is called a pure state.

e = idH the identity operator. This is an order unit in B. We can
interpret e as the state of maximal uncertainty.Lb, cM = tr(bc) the Hilbert-Schmidt inner product on B is
positive-definite and sharply positive.
For b ∈ B+ set ∥b∥ = Le, bM = tr(b). This defines the trace norm on
B. The proper states are the elements of B1 ⊆ B≤1 ⊆ B+ ⊆ B.
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Quantum statistical mechanics

The positive transformations P+ are all completely positive maps
B → B. The proper (norm decreasing) ones are also called quantum
operations.

The time-evolution map T[t1,t2] : B → B is given by b 7→ U[t1,t2]b U†
[t1,t2]

.
This is a non-selective transformation that leaves the inner product L·, ·M
invariant.
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Transformations and Measurements

A general measurement with n outcomes and its expectation value is
given as seen for the convex operational framework.

Any positive transformation P ∈ P+, i.e., completely positive map
B → B can be decomposed in terms of operators {Ki}i∈I, called Kraus
operators so that,

P(b) =
∑
i∈I

KibK†
i .

P is proper, i.e., norm decreasing iff
∑

i∈I K†
i Ki ≤ id and norm

preserving iff
∑

i∈I K†
i Ki = id.

For the time-evolution map T[t1,t2] we have I = {1} and K1 = U[t1,t2].
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A general measurement with n outcomes and its expectation value is
given as seen for the convex operational framework.

Any positive transformation P ∈ P+, i.e., completely positive map
B → B can be decomposed in terms of operators {Ki}i∈I, called Kraus
operators so that,

P(b) =
∑
i∈I

KibK†
i .

P is proper, i.e., norm decreasing iff
∑

i∈I K†
i Ki ≤ id and norm

preserving iff
∑

i∈I K†
i Ki = id.

For the time-evolution map T[t1,t2] we have I = {1} and K1 = U[t1,t2].
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Observable measurement as a special case
An observable O defines for each eigenvalue λk of O =

∑n
k=1 λkPk a

selective transformation via P̃k(b) = PkbP†
k . Set Õ :=

∑n
i=1 λkP̃k. If

b = Pψ,

⟨O⟩Pψ = Le, Õ(Pψ)M = n∑
k=1

λktr(PkPψP†
k) =

n∑
k=1

λk⟨ψ,Pkψ⟩H = ⟨ψ,Oψ⟩H

Πk = Le, P̃k(Pψ)M = ∥P̃k(Pψ)∥ = tr(PkPψ) = ⟨ψ,Pkψ⟩H = ∥Pkψ∥2H .

b′ =
P̃k(Pψ)
∥P̃k(Pψ)∥

=
PkPψP†

k
∥Pkψ∥2H

= PPkψ .
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Time-evolution frameworks

classical
mechanics

quantum
mechanics

statistical
mechanics

quantum
mechanics

statistical

anti-lattices

lattices

framework

Hilbert space modulus-

functor

squareformalism

functor

statistical

quantization

standard
formulation of
quantum theory

convex operational
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