The convex operational framework: classical and quantum theory

Robert Oeckl

Centro de Ciencias Matemáticas Universidad Nacional Autónoma de México Morelia, Mexico

Seminar General Boundary Formulation 21 March 2018

<ロ> (四) (四) (三) (三) (三) (三)

Robert Oeckl (CCM-UNAM)

the convex operational framework

2018-03-21 2 / 20

The convex operational framework

We adopt a **time-evolution** picture of physics.

- To a **system** associate a space \mathcal{B} of (generalized) **states**.
- The system evolves through transformations *P* : *B* → *B*. These may involve measurements, observations, interventions.

イロト (得) (き) (き)

The convex operational framework

We adopt a **time-evolution** picture of physics.

- To a **system** associate a space \mathcal{B} of (generalized) **states**.
- The system evolves through transformations *P* : *B* → *B*. These may involve measurements, observations, interventions.

Here, $b_2 = P(b_1)$.

- The (generalized) state space *B* is a partially ordered vector space with positive cone *B*⁺ ⊆ *B*.
- \mathcal{B} carries a positive-definite, sharply positive inner product (\cdot, \cdot) .
- There is a special state of maximal uncertainty $e \in \mathcal{B}^+$. It encodes complete lack of knowledge. It is an order unit.
- For b ∈ B⁺, ||b|| = (b, e) defines a norm. If b ≠ 0 then ||b|| > 0. Denote the normalized elements of B⁺ by B¹. These are called proper states. We denote B^{≤1} ⊆ B⁺ the positive elements with norm less or equal to 1.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Transformations

- The (generalized) space of transformations *P* is a partially ordered vector space with positive cone *P*⁺ ⊆ *P*.
- A (generalized) transformation *P* is a map $P : \mathcal{B} \to \mathcal{B}$. If $P \in \mathcal{P}^+$, then $P(\mathcal{B}^+) \subseteq \mathcal{B}^+$.
- If moreover, $P(\mathcal{B}^{\leq 1}) \subseteq \mathcal{B}^{\leq 1}$ we say that *P* is a **proper transformation**.
- If even $P(\mathcal{B}^1) \subseteq \mathcal{B}^1$ we say that *P* is **non-selective**. Otherwise it is called **selective**.
- For a time-interval $[t_1, t_2]$ there is a special non-selective transformation $T_{[t_1, t_2]}$ that encodes the **free time-evolution** of the system. This also preserves the inner product.

イロト 不得 トイヨト イヨト 二日

Measurement (without post-selection)

To encode a measurement with *n* possible outcomes we need *n* **selective transformations** P_1, \ldots, P_n such that the sum $P = P_1 + \cdots + P_n$ is a **non-selective transformation**.

The probability Π_k for the outcome *k* given an initial state $b \in \mathcal{B}^1$,

 $\Pi_k = (\mathbf{e}, P_k(b)) = ||P_k(b)||.$

The final state of the system after the measurement with outcome k is,

$$b' = \frac{P_k(b)}{\|P_k(b)\|}.$$

Robert Oeckl (CCM-UNAM)

Suppose we associate with measurement outcome *n* the measured **value** $\lambda_n \in \mathbb{R}$. We form the generalized transformation $\hat{P} := \lambda_1 P_1 + \cdots + \lambda_n P_n$. Then, the **expectation value** of the measurement is given by,

$$\langle \hat{P} \rangle_b = \sum_{k=1}^n \lambda_k \Pi_k = \sum_{k=1}^n \lambda_k \langle \langle \mathbf{e}, P_k(b) \rangle = \langle \langle \mathbf{e}, \hat{P}(b) \rangle$$

イロト イポト イヨト イヨト

Classical mechanics

- To a system we associate a **phase space** *L* of **initial data**. This provides a complete description of physics at an instant of time.
- The phase space carries a **symplectic structure** *ω*.

A B > A B >

Classical mechanics

- To a system we associate a **phase space** *L* of **initial data**. This provides a complete description of physics at an instant of time.
- The phase space carries a **symplectic structure** *ω*.
- A Hamiltonian function $H : L \to \mathbb{R}$ determines a flow X_H on phase space via,

$$\mathrm{d}H(Y)=2\omega(Y,X_H).$$

This determines the **infinitesimal time-evolution** on *L*.

• Exponentiation yields finite **time-evolution** maps $v_{[t_1,t_2]} : L \to L$ given by $v_{[t_1,t_2]}(x) = \exp((t_2 - t_1)X_H)x$. These are **symplectomorphisms**.

イロト 不得 とくき とくき とうき

- An **observable** *O* is a function *O* : *L* → ℝ. It provides the value of a **measurement** on the system.
- Let $S \subseteq L$ and $\chi_S : L \to \mathbb{R}$ the characteristic function

$$\chi_S(x) = \begin{cases} 1 & \text{if } x \in S \\ 0 & \text{if } x \notin S \end{cases} .$$

Then χ_S is the observable that tells us if we are in the subset *S* of the phase space.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

In classical **statistical** mechanics a **state** is a **statistical distribution** on phase space.

We introduce a reference **probability measure** μ on *L* and model states as functions. If *L* has dimension 2n, then a suitable measure is $\omega^{\wedge n}$.

In classical **statistical** mechanics a **state** is a **statistical distribution** on phase space.

We introduce a reference **probability measure** μ on *L* and model states as functions. If *L* has dimension 2n, then a suitable measure is $\omega^{\wedge n}$.

Let \mathcal{B} be the space of real valued functions on L (with suitable regularity properties). This is a partially ordered vector space. \mathcal{B}^+ is the set of **positive functions**, i.e., functions that take non-negative values everywhere.

The overall probability associated to a distribution $b : L \to \mathbb{R}_0^+$ is its integral,

$$\|b\| := \int |b(x)| \,\mathrm{d}\mu(x).$$

(This defines the L^1 -norm on \mathcal{B} .)

A proper state must yield total probability 1, so we require ||b|| = 1. This defines $\mathcal{B}^1 \subseteq \mathcal{B}^+$ (and $\mathcal{B}^{\leq 1}$).

2018-03-21 11 / 20

• □ ▶ • < </p>
• □ ▶ •

A proper state must yield total probability 1, so we require ||b|| = 1. This defines $\mathcal{B}^1 \subseteq \mathcal{B}^+$ (and $\mathcal{B}^{\leq 1}$).

- **e** = **1** the constant function with value 1 is an **order unit** (supposing functions are bounded). It encodes the **uniform statistical distribution**. It can be interpreted as the state of minimal knowledge, i.e., maximal uncertainty.
- $(b, c) = \int b(x)c(x)d\mu(x)$ the L² inner product is a natural positive-definite, sharply positive inner product on \mathcal{B} .
- For $b \in \mathcal{B}^+$ we have $||b|| = (|\mathbf{e}, b|)$.

A proper state must yield total probability 1, so we require ||b|| = 1. This defines $\mathcal{B}^1 \subseteq \mathcal{B}^+$ (and $\mathcal{B}^{\leq 1}$).

- **e** = **1** the constant function with value 1 is an **order unit** (supposing functions are bounded). It encodes the **uniform statistical distribution**. It can be interpreted as the state of minimal knowledge, i.e., maximal uncertainty.
- $(b, c) = \int b(x)c(x)d\mu(x)$ the L² inner product is a natural positive-definite, sharply positive inner product on \mathcal{B} .
- For $b \in \mathcal{B}^+$ we have $||b|| = (|\mathbf{e}, b|)$.

Time-evolution of distributions is, $(T_{[t_1,t_2]}(b))(x) = b(v_{[t_1,t_2]}^{-1}(x))$. This is a **non-selective transformation** that leaves the inner product invariant (if the measure is invariant under time-evolution).

イロト 不得 トイヨト イヨト 二日

Measurement

 $O: L \to \mathbb{R}$ an observable. Its expectation value in a state $b \in \mathcal{B}^1$ is,

$$\langle O \rangle_b = \int O(x) b(x) \,\mathrm{d}\mu(x).$$

2018-03-21 12 / 20

(日) (同) (日) (日) (日)

Measurement

 $O: L \to \mathbb{R}$ an observable. Its expectation value in a state $b \in \mathcal{B}^1$ is,

$$\langle O \rangle_b = \int O(x) b(x) \,\mathrm{d}\mu(x).$$

We introduce the (generalized) **transformation** $\tilde{O} : \mathcal{B} \to \mathcal{B}$ given by, $(\tilde{O}(b))(x) := O(x)b(x)$. Then,

 $\langle O \rangle_b = (\mathbf{e}, \tilde{O}(b)).$

Measurement

 $O: L \to \mathbb{R}$ an observable. Its expectation value in a state $b \in \mathcal{B}^1$ is,

$$\langle O \rangle_b = \int O(x) b(x) \,\mathrm{d}\mu(x).$$

We introduce the (generalized) **transformation** $\tilde{O} : \mathcal{B} \to \mathcal{B}$ given by, $(\tilde{O}(b))(x) := O(x)b(x)$. Then,

$$\langle O \rangle_b = (\mathbf{e}, \tilde{O}(b)).$$

Suppose *O* takes values $\lambda_1 \dots, \lambda_n$ on S_1, \dots, S_n with $L = S_1 \sqcup \dots \sqcup S_n$. That is, $O = \sum_{k=1}^n \lambda_k \chi_{S_k}$. Note that $\tilde{\chi}_{S_k}$ is **selective** while $\sum_{k=1}^n \tilde{\chi}_{S_k} = id$ is **non-selective**. The probability for measuring λ_k (outcome *k*) is,

$$\Pi_k = (\mathbf{e}, \tilde{\chi}_{S_k}(b)) = \|\tilde{\chi}_{S_k}(b)\|.$$

After the measurement the state is updated to

$$b' = \frac{\tilde{\chi}_{S_k}(b)}{\|\tilde{\chi}_{S_k}(b)\|}.$$

Robert Oeckl (CCM-UNAM)

2018-03-21 12 / 20

- To a system we associate a complex **Hilbert space** \mathcal{H} .
- A self-adjoint Hamiltonian operator *H* : *H* → *H* determines infinitesimal time-evolution on *H* via the Schrödinger equation,

$$\frac{\partial}{\partial t}\psi = -\mathrm{i}H\psi, \qquad \text{for} \quad \psi \in \mathcal{H}.$$

• The operator describing time-evolution in the interval $[t_1, t_2]$ is $U_{[t_1, t_2]} = \exp(-i(t_2 - t_1)H)$. It is **unitary**.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Observables and measurement

An **observable** is a self-adjoint operator $O : \mathcal{H} \to \mathcal{H}$.

Measuring an observable in a state ψ yields the expectation value,

 $\langle O \rangle_{\psi} = \langle \psi, O \psi \rangle_{\mathcal{H}}.$

• • = • • =

Observables and measurement

An **observable** is a self-adjoint operator $O : \mathcal{H} \to \mathcal{H}$.

Measuring an observable in a state ψ yields the expectation value,

 $\langle O \rangle_{\psi} = \langle \psi, O \psi \rangle_{\mathcal{H}}.$

Suppose $O = \sum_{k=1}^{n} \lambda_k P_k$, where P_k are orthogonal projection operators. The probability for obtaining the measurement result λ_k is,

 $\Pi_k = \langle \psi, P_k \psi \rangle_{\mathcal{H}} = \| P_k \psi \|_{\mathcal{H}}^2.$

After the measurement, the state "collapses to"

$$\psi' = \frac{P_k \psi}{\|P_k \psi\|_{\mathcal{H}}}.$$

Robert Oeckl (CCM-UNAM)

2018-03-21 14 / 20

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Quantum statistical mechanics

The (generalized) state space is the space \mathcal{B} of self-adjoint operators on \mathcal{H} . This is a partially ordered vector space with positive cone \mathcal{B}^+ the positive operators.

To an element $\psi \in \mathcal{H}$ we associate in \mathcal{B}^+ the projector on the subspace spanned by ψ . Such an element of \mathcal{B}^+ is called a **pure state**.

Quantum statistical mechanics

The (generalized) state space is the space \mathcal{B} of self-adjoint operators on \mathcal{H} . This is a partially ordered vector space with positive cone \mathcal{B}^+ the positive operators.

To an element $\psi \in \mathcal{H}$ we associate in \mathcal{B}^+ the projector on the subspace spanned by ψ . Such an element of \mathcal{B}^+ is called a **pure state**.

- **e** = id_{*H*} the **identity operator**. This is an **order unit** in *B*. We can interpret **e** as the state of maximal uncertainty.
- (*b*, *c*) = tr(*bc*) the Hilbert-Schmidt inner product on 𝔅 is positive-definite and sharply positive.
- For b ∈ B⁺ set ||b|| = (e, b) = tr(b). This defines the trace norm on B. The proper states are the elements of B¹ ⊆ B^{≤1} ⊆ B⁺ ⊆ B.

イロト 不得 とくき とくき とうき

- The positive transformations \mathcal{P}^+ are all completely positive maps $\mathcal{B} \to \mathcal{B}$. The proper (norm decreasing) ones are also called **quantum** operations.
- The time-evolution map $T_{[t_1,t_2]} : \mathcal{B} \to \mathcal{B}$ is given by $b \mapsto U_{[t_1,t_2]} b U_{[t_1,t_2]}^{\dagger}$. This is a non-selective transformation that leaves the inner product (\cdot, \cdot) invariant.

Transformations and Measurements

A general measurement with *n* outcomes and its expectation value is given as seen for the convex operational framework.

A general measurement with *n* outcomes and its expectation value is given as seen for the convex operational framework.

Any positive transformation $P \in \mathcal{P}^+$, i.e., completely positive map $\mathcal{B} \to \mathcal{B}$ can be decomposed in terms of operators $\{K_i\}_{i \in I}$, called **Kraus operators** so that,

$$P(b) = \sum_{i \in I} K_i b K_i^{\dagger}.$$

P is proper, i.e., norm decreasing iff $\sum_{i \in I} K_i^{\dagger} K_i \leq \text{id}$ and norm preserving iff $\sum_{i \in I} K_i^{\dagger} K_i = \text{id}$.

For the time-evolution map $T_{[t_1,t_2]}$ we have $I = \{1\}$ and $K_1 = U_{[t_1,t_2]}$.

イロト 不得 トイヨト イヨト 二日

Observable measurement as a special case

An observable *O* defines for each eigenvalue λ_k of $O = \sum_{k=1}^n \lambda_k P_k$ a **selective transformation** via $\tilde{P}_k(b) = P_k b P_k^{\dagger}$. Set $\tilde{O} := \sum_{i=1}^n \lambda_k \tilde{P}_k$. If $b = P_{\psi}$,

$$\langle O \rangle_{P_{\psi}} = (\mathbf{e}, \tilde{O}(P_{\psi})) = \sum_{k=1}^{n} \lambda_k \operatorname{tr}(P_k P_{\psi} P_k^{\dagger}) = \sum_{k=1}^{n} \lambda_k \langle \psi, P_k \psi \rangle_{\mathcal{H}} = \langle \psi, O \psi \rangle_{\mathcal{H}}$$

 $\Pi_k = \langle \mathbf{e}, \tilde{P}_k(P_{\psi}) \rangle = \|\tilde{P}_k(P_{\psi})\| = \operatorname{tr}(P_k P_{\psi}) = \langle \psi, P_k \psi \rangle_{\mathcal{H}} = \|P_k \psi\|_{\mathcal{H}}^2.$

$$b' = \frac{\tilde{P}_k(P_{\psi})}{\|\tilde{P}_k(P_{\psi})\|} = \frac{P_k P_{\psi} P_k^{\dagger}}{\|P_k \psi\|_{\mathcal{H}}^2} = P_{P_k \psi}.$$

Robert Oeckl (CCM-UNAM)

the convex operational framework

2018-03-21 18 / 20

Time-evolution frameworks

R. O., A local and operational framework for the foundations of physics, arXiv:1610.09052.