Quantum abelian Yang-Mills fields on Riemannian manifolds

Homero G. Díaz Marín

FISMAT-UMSNH
joint with R. OeckI, CCM-UNAM

CCM-UNAM
sept. 2018

Contents:

Regions and hypersurfaces

Classical abelian YM fields

Quantum abelian YM fields

Some examples

Piecewise reconstruction of Space-time

- Space-time regions $\left\{\left(M, \mathcal{P}_{M}, S_{M}\right)\right\}$:

Piecewise reconstruction of Space-time

- Space-time regions $\left\{\left(M, \mathcal{P}_{M}, S_{M}\right)\right\}$:

1. Topology: n-dimensional manifolds, oriented, compact, probably with boundary

Piecewise reconstruction of Space-time

- Space-time regions $\left\{\left(M, \mathcal{P}_{M}, S_{M}\right)\right\}$:

1. Topology: n-dimensional manifolds, oriented, compact, probably with boundary
2. Geometry

Piecewise reconstruction of Space-time

- Space-time regions $\left\{\left(M, \mathcal{P}_{M}, S_{M}\right)\right\}$:

1. Topology: n-dimensional manifolds, oriented, compact, probably with boundary
2. Geometry

- Kinematics: A principal bundle $\mathcal{P}_{M} \rightarrow M$

Piecewise reconstruction of Space-time

- Space-time regions $\left\{\left(M, \mathcal{P}_{M}, S_{M}\right)\right\}$:

1. Topology: n-dimensional manifolds, oriented, compact, probably with boundary
2. Geometry

- Kinematics: A principal bundle $\mathcal{P}_{M} \rightarrow M$
- Dynamics: Riemannian metric g_{M} and a corresponding action

$$
S_{M}: \operatorname{Conn}\left(\mathcal{P}_{M}\right) \rightarrow \mathbb{R}
$$

Piecewise reconstruction of Space-time

- Space-time regions $\left\{\left(M, \mathcal{P}_{M}, S_{M}\right)\right\}$:

1. Topology: n-dimensional manifolds, oriented, compact, probably with boundary
2. Geometry

- Kinematics: A principal bundle $\mathcal{P}_{M} \rightarrow M$
- Dynamics: Riemannian metric g_{M} and a corresponding action

$$
S_{M}: \operatorname{Conn}\left(\mathcal{P}_{M}\right) \rightarrow \mathbb{R}
$$

3. Operations: Disjoint union operation: $M \sqcup M^{\prime}$

Piecewise reconstruction of Space-time

- Space-time regions $\left\{\left(M, \mathcal{P}_{M}, S_{M}\right)\right\}$:

1. Topology: n-dimensional manifolds, oriented, compact, probably with boundary
2. Geometry

- Kinematics: A principal bundle $\mathcal{P}_{M} \rightarrow M$
- Dynamics: Riemannian metric g_{M} and a corresponding action

$$
S_{M}: \operatorname{Conn}\left(\mathcal{P}_{M}\right) \rightarrow \mathbb{R}
$$

3. Operations: Disjoint union operation: $M \sqcup M^{\prime}$
4. Special regions: Slice regions $\hat{\Sigma}$.

Piecewise reconstruction of Space-time

- Space-time regions $\left\{\left(M, \mathcal{P}_{M}, S_{M}\right)\right\}$:

1. Topology: n-dimensional manifolds, oriented, compact, probably with boundary
2. Geometry

- Kinematics: A principal bundle $\mathcal{P}_{M} \rightarrow M$
- Dynamics: Riemannian metric g_{M} and a corresponding action

$$
S_{M}: \operatorname{Conn}\left(\mathcal{P}_{M}\right) \rightarrow \mathbb{R}
$$

3. Operations: Disjoint union operation: $M \sqcup M^{\prime}$
4. Special regions: Slice regions $\hat{\Sigma}$.

- Hypersurfaces $\left\{\left(\Sigma, g_{\Sigma}, \partial / \partial n_{\Sigma}, \mathcal{P}_{\Sigma}\right)\right\}$:

Piecewise reconstruction of Space-time

- Space-time regions $\left\{\left(M, \mathcal{P}_{M}, S_{M}\right)\right\}$:

1. Topology: n-dimensional manifolds, oriented, compact, probably with boundary
2. Geometry

- Kinematics: A principal bundle $\mathcal{P}_{M} \rightarrow M$
- Dynamics: Riemannian metric g_{M} and a corresponding action

$$
S_{M}: \operatorname{Conn}\left(\mathcal{P}_{M}\right) \rightarrow \mathbb{R}
$$

3. Operations: Disjoint union operation: $M \sqcup M^{\prime}$
4. Special regions: Slice regions $\hat{\Sigma}$.

- Hypersurfaces $\left\{\left(\Sigma, g_{\Sigma}, \partial / \partial n_{\Sigma}, \mathcal{P}_{\Sigma}\right)\right\}$:

1. Topology: $(n-1)$-dimensional manifolds, oriented, compact, without boundary.

Piecewise reconstruction of Space-time

- Space-time regions $\left\{\left(M, \mathcal{P}_{M}, S_{M}\right)\right\}$:

1. Topology: n-dimensional manifolds, oriented, compact, probably with boundary
2. Geometry

- Kinematics: A principal bundle $\mathcal{P}_{M} \rightarrow M$
- Dynamics: Riemannian metric g_{M} and a corresponding action

$$
S_{M}: \operatorname{Conn}\left(\mathcal{P}_{M}\right) \rightarrow \mathbb{R}
$$

3. Operations: Disjoint union operation: $M \sqcup M^{\prime}$
4. Special regions: Slice regions $\hat{\Sigma}$.

- Hypersurfaces $\left\{\left(\Sigma, g_{\Sigma}, \partial / \partial n_{\Sigma}, \mathcal{P}_{\Sigma}\right)\right\}$:

1. Topology: $(n-1)$-dimensional manifolds, oriented, compact, without boundary.
2. Geometry:

Piecewise reconstruction of Space-time

- Space-time regions $\left\{\left(M, \mathcal{P}_{M}, S_{M}\right)\right\}$:

1. Topology: n-dimensional manifolds, oriented, compact, probably with boundary
2. Geometry

- Kinematics: A principal bundle $\mathcal{P}_{M} \rightarrow M$
- Dynamics: Riemannian metric g_{M} and a corresponding action

$$
S_{M}: \operatorname{Conn}\left(\mathcal{P}_{M}\right) \rightarrow \mathbb{R}
$$

3. Operations: Disjoint union operation: $M \sqcup M^{\prime}$
4. Special regions: Slice regions $\hat{\Sigma}$.

- Hypersurfaces $\left\{\left(\Sigma, g_{\Sigma}, \partial / \partial n_{\Sigma}, \mathcal{P}_{\Sigma}\right)\right\}$:

1. Topology: $(n-1)$-dimensional manifolds, oriented, compact, without boundary.
2. Geometry:

- a collar or normal structure, i.e. a germ of a Riemannian metric in a tubular neighborhood of $\Sigma: \bar{g}_{\Sigma}$, partial $/ \partial n_{\Sigma}$.

Piecewise reconstruction of Space-time

- Space-time regions $\left\{\left(M, \mathcal{P}_{M}, S_{M}\right)\right\}$:

1. Topology: n-dimensional manifolds, oriented, compact, probably with boundary
2. Geometry

- Kinematics: A principal bundle $\mathcal{P}_{M} \rightarrow M$
- Dynamics: Riemannian metric g_{M} and a corresponding action

$$
S_{M}: \operatorname{Conn}\left(\mathcal{P}_{M}\right) \rightarrow \mathbb{R}
$$

3. Operations: Disjoint union operation: $M \sqcup M^{\prime}$
4. Special regions: Slice regions $\hat{\Sigma}$.

- Hypersurfaces $\left\{\left(\Sigma, g_{\Sigma}, \partial / \partial n_{\Sigma}, \mathcal{P}_{\Sigma}\right)\right\}$:

1. Topology: $(n-1)$-dimensional manifolds, oriented, compact, without boundary.
2. Geometry:

- a collar or normal structure, i.e. a germ of a Riemannian metric in a tubular neighborhood of $\Sigma: \bar{g}_{\Sigma}$, partial $/ \partial n_{\Sigma}$.
- A principal bundel $\mathcal{P}_{\Sigma} \rightarrow \Sigma$

Piecewise reconstruction of Space-time

- Space-time regions $\left\{\left(M, \mathcal{P}_{M}, S_{M}\right)\right\}$:

1. Topology: n-dimensional manifolds, oriented, compact, probably with boundary
2. Geometry

- Kinematics: A principal bundle $\mathcal{P}_{M} \rightarrow M$
- Dynamics: Riemannian metric g_{M} and a corresponding action

$$
S_{M}: \operatorname{Conn}\left(\mathcal{P}_{M}\right) \rightarrow \mathbb{R}
$$

3. Operations: Disjoint union operation: $M \sqcup M^{\prime}$
4. Special regions: Slice regions $\hat{\Sigma}$.

- Hypersurfaces $\left\{\left(\Sigma, g_{\Sigma}, \partial / \partial n_{\Sigma}, \mathcal{P}_{\Sigma}\right)\right\}$:

1. Topology: $(n-1)$-dimensional manifolds, oriented, compact, without boundary.
2. Geometry:

- a collar or normal structure, i.e. a germ of a Riemannian metric in a tubular neighborhood of $\Sigma: \bar{g}_{\Sigma}$, partial $/ \partial n_{\Sigma}$.
- A principal bundel $\mathcal{P}_{\Sigma} \rightarrow \Sigma$

3. Operations:

Piecewise reconstruction of Space-time

- Space-time regions $\left\{\left(M, \mathcal{P}_{M}, S_{M}\right)\right\}$:

1. Topology: n-dimensional manifolds, oriented, compact, probably with boundary
2. Geometry

- Kinematics: A principal bundle $\mathcal{P}_{M} \rightarrow M$
- Dynamics: Riemannian metric g_{M} and a corresponding action

$$
S_{M}: \operatorname{Conn}\left(\mathcal{P}_{M}\right) \rightarrow \mathbb{R}
$$

3. Operations: Disjoint union operation: $M \sqcup M^{\prime}$
4. Special regions: Slice regions $\hat{\Sigma}$.

- Hypersurfaces $\left\{\left(\Sigma, g_{\Sigma}, \partial / \partial n_{\Sigma}, \mathcal{P}_{\Sigma}\right)\right\}$:

1. Topology: $(n-1)$-dimensional manifolds, oriented, compact, without boundary.
2. Geometry:

- a collar or normal structure, i.e. a germ of a Riemannian metric in a tubular neighborhood of $\Sigma: \bar{g}_{\Sigma}$, partial $/ \partial n_{\Sigma}$.
- A principal bundel $\mathcal{P}_{\Sigma} \rightarrow \Sigma$

3. Operations:

- Disjoint union: $\Sigma \sqcup \Sigma^{\prime}$.

Piecewise reconstruction of Space-time

- Space-time regions $\left\{\left(M, \mathcal{P}_{M}, S_{M}\right)\right\}$:

1. Topology: n-dimensional manifolds, oriented, compact, probably with boundary
2. Geometry

- Kinematics: A principal bundle $\mathcal{P}_{M} \rightarrow M$
- Dynamics: Riemannian metric g_{M} and a corresponding action

$$
S_{M}: \operatorname{Conn}\left(\mathcal{P}_{M}\right) \rightarrow \mathbb{R}
$$

3. Operations: Disjoint union operation: $M \sqcup M^{\prime}$
4. Special regions: Slice regions $\hat{\Sigma}$.

- Hypersurfaces $\left\{\left(\Sigma, g_{\Sigma}, \partial / \partial n_{\Sigma}, \mathcal{P}_{\Sigma}\right)\right\}$:

1. Topology: $(n-1)$-dimensional manifolds, oriented, compact, without boundary.
2. Geometry:

- a collar or normal structure, i.e. a germ of a Riemannian metric in a tubular neighborhood of $\Sigma: \bar{g}_{\Sigma}$, partial $/ \partial n_{\Sigma}$.
- A principal bundel $\mathcal{P}_{\Sigma} \rightarrow \Sigma$

3. Operations:

- Disjoint union: $\Sigma \sqcup \Sigma^{\prime}$.
- Orientation reversal: $\Sigma \mapsto \bar{\Sigma}$

Piecewise reconstruction of Space-time

- Space-time regions $\left\{\left(M, \mathcal{P}_{M}, S_{M}\right)\right\}$:

1. Topology: n-dimensional manifolds, oriented, compact, probably with boundary
2. Geometry

- Kinematics: A principal bundle $\mathcal{P}_{M} \rightarrow M$
- Dynamics: Riemannian metric g_{M} and a corresponding action

$$
S_{M}: \operatorname{Conn}\left(\mathcal{P}_{M}\right) \rightarrow \mathbb{R}
$$

3. Operations: Disjoint union operation: $M \sqcup M^{\prime}$
4. Special regions: Slice regions $\hat{\Sigma}$.

- Hypersurfaces $\left\{\left(\Sigma, g_{\Sigma}, \partial / \partial n_{\Sigma}, \mathcal{P}_{\Sigma}\right)\right\}$:

1. Topology: $(n-1)$-dimensional manifolds, oriented, compact, without boundary.
2. Geometry:

- a collar or normal structure, i.e. a germ of a Riemannian metric in a tubular neighborhood of $\Sigma: \bar{g}_{\Sigma}$, partial $/ \partial n_{\Sigma}$.
- A principal bundel $\mathcal{P}_{\Sigma} \rightarrow \Sigma$

3. Operations:

- Disjoint union: $\Sigma \sqcup \Sigma^{\prime}$.
- Orientation reversal: $\Sigma \mapsto \bar{\Sigma}$

4. Special hypersurfaces: boundary hypersurfaces:

$$
\begin{gathered}
\Sigma=\partial M, \partial \hat{\Sigma}=\Sigma \sqcup \bar{\Sigma} \\
\partial: \text { Regions } \rightarrow \text { Hypersurfaces }
\end{gathered}
$$

$\mathcal{P}_{\partial M} \rightarrow \partial M$ induced by $\mathcal{P}_{M} \rightarrow M$

Gluing (Topology and geometry)

A principal bundle $\mathcal{P}_{M_{1}} \rightarrow M_{1}$ is obtained by gluing along Σ from $\mathcal{P}_{M} \rightarrow M$. Similarly for a Riemannian metric $g_{M_{1}}$ obtained from g_{M}.

Spacetime system
 $\left(\left\{\left(M, \mathcal{P}_{M}, S_{M}\right)\right\}, \sqcup\right) \xrightarrow{\partial}\left(\left\{\left(\Sigma, g_{\Sigma}, \partial / \partial n_{\Sigma}, \mathcal{P}_{\Sigma}\right)\right\}_{\Sigma}, \sqcup\right)$

Lagr. embeddings

Amplitude maps

$$
\operatorname{Lagr}\left(A_{\Sigma}, \omega_{\Sigma}\right)=\left\{\tilde{A} \subseteq A^{\prime} \mid \tilde{A} \subseteq A^{\prime} \text { lagr. }, A^{\prime} \subseteq A_{\Sigma} \text { symplectic }\right\}
$$

Classical and quantum gluing rules

the composition of the dotted maps $(\cdot)_{M} \vdash->(\cdot)_{M_{1}} \mid \cdots \cdots(\cdot)_{\Sigma_{1}} \longrightarrow(\cdot)_{\Sigma}$ preserves the partial order induced by the inclusion of hypersurfaces $\Sigma \subseteq \Sigma_{1}$:

$$
\begin{aligned}
& \operatorname{Lagr}\left(A_{\Sigma_{1}}, \omega_{\Sigma_{1}}\right) \longrightarrow \operatorname{Lagr}\left(A_{\Sigma}, \omega_{\Sigma}\right) \\
& \operatorname{Maps}\left(\mathcal{H}_{\Sigma_{1}}, \mathbb{C}\right) \longleftrightarrow \operatorname{Maps}\left(\mathcal{H}_{\Sigma}, \mathbb{C}\right)
\end{aligned}
$$

Classical and quantum spacetime reconstruction

Classical gluing

For $\partial M=\Sigma_{1} \sqcup \Sigma \sqcup \overline{\Sigma^{\prime}}$, with $M_{1}=M / \sim_{\Sigma}$

Quantum gluing

For $\left\{\xi_{i}\right\}_{i \in I}$ an orthonormal basis of \mathcal{H}_{Σ}

$$
\rho_{M_{1}}(\psi) \cdot c\left(M ; \Sigma, \overline{\Sigma^{\prime}}\right)=\sum_{i \in I} \rho_{M}\left(\psi \otimes \xi_{i} \otimes \iota \Sigma\left(\xi_{i}\right)\right)
$$

In particular for $\Sigma_{1}=\emptyset$, we have that $\partial M_{1}=\emptyset$, therefore $\rho_{M_{1}} \in \mathbb{C}$.

Classical abelian YM fileds in regions

- $\mathcal{P}_{M} \rightarrow M$ a $U(1)$ principal bundle
- Action on connections $\eta \in \operatorname{Conn}\left(\mathcal{E}_{M}\right)$, with curvature F^{η},

$$
S_{M}(\eta)=\int_{M} F^{\eta} \wedge \star F^{\eta}
$$

- For fixed $\eta_{\mathcal{P}} \in \operatorname{Conn}\left(\mathcal{P}_{M}\right) \eta_{=} \eta_{\mathcal{E}}+\varphi$, has Euler-Laagrange equations

$$
d \star F^{\eta}=d \star d \varphi=0
$$

- Gauge symmetries

$$
\tilde{\eta}=\eta+d f, \quad S_{M}(\tilde{\eta})=S_{M}(\eta)
$$

- (Affine) Space of solutions modulo gauge (Lorentz gauge fixing)

$$
A_{M}=\left\{\eta=\eta_{\mathcal{E}}+d \varphi \in \operatorname{Conn}\left(\mathcal{P}_{M}\right) \mid d^{\star} F^{\eta}=0, d \star \varphi=0\right\}
$$

modeled over a linear space

$$
L_{M} \subseteq\left\{d^{\star} d \varphi=0, d \star \varphi=0\right\} \subseteq \Omega^{1}(M)
$$

Boundary conditions of YM fields

- Dirichlet and Neumann conditions map

$$
r_{M}: \varphi \in L_{M} \mapsto\left(\left[\varphi^{D}\right], \varphi^{N}\right) \in \Omega^{1}(\partial M)^{\oplus^{2}}
$$

- Gauge action $\varphi^{D} \mapsto \varphi^{D}+d f$ with axial gauge fixing

$$
d \star_{\partial M} \varphi^{D}=0, \quad d \star_{\star^{\prime}} \varphi^{N}=0
$$

- (Linear) space of boundary conditions of solutions modulo gauge:

$$
\begin{gathered}
L_{\tilde{M}}=r_{M}\left(L_{M}\right) \\
A_{\tilde{M}}=r_{M}\left(\eta_{\mathcal{P}_{M}}\right)+L_{\tilde{M}}
\end{gathered}
$$

- There is an affine fibration

$$
a_{M}: A_{M} \rightarrow A_{\tilde{M}}
$$

Boundary conditions on hypersurfaces

$$
\begin{gathered}
A_{\Sigma}=a_{\Sigma_{\varepsilon}}\left(\eta_{\mathcal{E}}\right)+L_{\Sigma} \\
L_{\Sigma} \subseteq\left(\Omega^{1}(\Sigma) / d \Omega^{0}\right) \oplus \Omega^{1}(\Sigma)
\end{gathered}
$$

Are boundary conditions modulo gauge in the bottom $\Sigma \times\{0\}$ of a (metric) cylinder

$$
\Sigma_{\varepsilon}=\Sigma \times[0, \varepsilon]
$$

Axial gauge fixing:

$$
L_{\Sigma} \subseteq\left(\operatorname{ker} d^{\star \partial M} /\{e x a c t\}\right) \oplus \operatorname{ker} d^{\star \partial M}
$$

The rôle of relative topology

- If $H_{\mathrm{dR}}^{1}(M ; \partial M)=0$, then:

1. There is an isomorphism.

$$
a_{M}: A_{M} \leftrightarrow A_{\tilde{M}}
$$

2. Every pair $\left(\left[\phi^{D}\right], \phi^{N}\right) \in L_{\partial M}$ can be realized as a boundary condition for a field $\varphi \in \Omega^{1}(M)$ inside the region (not necessarily a solution), so that

$$
r_{M}(\varphi)=\left(\left[\phi^{D}\right], \phi^{N}\right)
$$

- If $H_{\mathrm{dR}}^{1}(M ; \partial M) \neq 0$, then:

1. There is a projection but not one-to-one

$$
a_{M}: A_{M} \rightarrow A_{\tilde{M}}
$$

2. There exists proper subspaces of topologically admissible boundary conditions modulo gauge,

$$
L_{\tilde{M}} \subseteq L_{M, \partial M} \subsetneq L_{\partial M}, \quad A_{\tilde{M}} \subseteq A_{M, \partial M} \subsetneq A_{\partial M}
$$

3. The harmonic projections of Dirichlet conditions $\left\{\varphi^{D}\right\}$ generate a finite dimensional isomorphic to $H_{\mathrm{dR}}^{1}(M ; \partial M)$ contained in $H_{\mathrm{dR}}^{1}(\partial M)$.

Semiclassical axiom (Complex structure)

- Recall

$$
H_{\mathrm{c}}^{1}(M \backslash \partial M) \simeq H_{\mathrm{dR}}^{1}(M ; \partial M) \rightarrow H_{\mathrm{dR}}^{1}(M) \rightarrow H_{\mathrm{dR}}^{1}(\partial M) \rightarrow \ldots
$$

- According to Belishev, Sharafutdinov, Shonkwiler, et. all.

$$
H_{d R}^{1}(M, \partial M) \simeq\left(\operatorname{ker} \mathcal{N}_{Y M}\right)^{\perp} \subseteq \mathfrak{H}^{1}(\partial M) \simeq H_{\mathrm{dR}}^{1}(\partial M)
$$

- Here $\mathcal{N}_{Y M}\left(\left[\varphi^{D}\right]\right)=\varphi^{N}$ The Dirichlet-Neumann operator, for the BVP

$$
\begin{cases}\Delta \varphi=0, & d^{\star} \varphi=0, \\ i_{\partial M}^{*} \varphi=\phi, & \\ \hline \in \Omega^{1}(M) \\ \phi \in \Omega^{1}(\partial M)\end{cases}
$$

- It yields a complex structure $J, J^{2}=-l d$

$$
J=\left(\begin{array}{cc}
0 & -\mathcal{N}_{Y M}^{-1} \\
\mathcal{N}_{Y M} & 0
\end{array}\right):\left(\operatorname{ker} \mathcal{N}_{Y M} /\{d f\}\right) \oplus \operatorname{ran} \mathcal{N}_{Y M} \circlearrowleft
$$

- $\mathrm{L}_{M, \partial M}=\mathrm{L}_{\tilde{M}} \oplus \mathrm{~J}_{\tilde{M}}$
- Symplectic structure:

$$
g_{\partial M}\left(\phi_{1}, \phi_{2}\right)=\int_{\partial M} \phi_{1}^{D} \wedge \star_{\partial M} \phi_{2}^{D}+\phi_{1}^{N} \wedge \star_{\partial M} \phi_{2}^{N}, \quad \omega_{\partial M}(\cdot, J \cdot)=\frac{1}{2} g_{\partial M}(\cdot, \cdot)
$$

Quantum abelian YM fields

- Linear Hilbert spaces:

$$
\mathcal{H}_{\Sigma}^{\mathrm{L}} \subseteq\left\{\chi: \hat{L}_{\Sigma} \rightarrow \mathbb{C}: \int_{\hat{L}_{\Sigma}}|\chi|^{2} \nu_{\Sigma}\right\}
$$

holomorphic functions on a linear space

$$
\operatorname{supp}\left(\nu_{\Sigma}\right) \subseteq \hat{L}_{\Sigma} \subseteq \operatorname{hom}\left(L_{\Sigma}, \mathbb{C}\right)
$$

ν_{Σ} gaussian with covariance $\frac{1}{2} g_{\Sigma}(\cdot, \cdot)$

- Holomorphic functions on the affine space $\hat{A}_{\Sigma}=a_{M}\left(\eta_{\mathcal{E}}\right)+\hat{L}_{\Sigma}$

$$
\psi(\varphi)=\chi^{\eta \mathcal{E}}(\varphi) \cdot \alpha_{\Sigma}^{\eta \mathcal{E}}(\varphi) \longmapsto \chi^{\eta \mathcal{E}}(\varphi)
$$

Amplitude map

- Amplitude map on space of linear functions: $\rho_{M}^{L}: \mathcal{H}_{\partial M}^{\mathrm{L} \circ} \rightarrow \mathbb{C}$

$$
\rho_{M}^{L}(\chi)=\int_{\hat{L}_{\tilde{M}}} \chi(\phi) d \nu_{M}(\phi)
$$

ν_{M}, covariance $\frac{1}{4} g_{\Sigma}(\cdot, \cdot)$-gaussian measure

$$
\operatorname{supp}\left(\nu_{M}\right) \subseteq \hat{L}_{\tilde{M}} \subseteq \hat{L}_{\partial M}
$$

- $\chi: \hat{L}_{\partial M} \rightarrow \mathbb{C}$ is $\nu_{\partial M}$ measurable, not necessarily $\nu_{\tilde{M}}$-measurable:

$$
\mathcal{H}_{\partial M}^{\mathrm{Lo}} \subsetneq \mathcal{H}_{\partial M}^{\mathrm{L}}
$$

- Amplitude map for affine holomorphic wave functions: $\rho_{M}: \mathcal{H}_{\partial M}^{\mathrm{Lo}} \rightarrow \mathbb{C}$

$$
\rho_{M}(\psi)=\exp \left(\mathrm{i} S_{M}(\eta \mathcal{E})\right) \int_{\hat{L}_{\mathcal{M}}} \chi^{\eta \mathcal{E}}(\phi) d \nu_{M}(\phi)
$$

Example of amplitude map

- Let M_{1} be a closed, $\partial M_{1}=\emptyset$, Riemann surface of genus $g \geq 2$ then

$$
A_{\tilde{M}_{1}}=A_{\partial M_{1}}=A_{\partial M_{1}, M_{1}}=\left\{\eta_{\mathcal{E}}\right\}
$$

hence

$$
\rho_{M_{1}}(\psi)=\exp \left(\mathrm{i} S_{M_{1}}\left(\eta_{\mathcal{E}_{1}}\right)\right)=\exp \left(\mathrm{i} 2 \pi^{2} \operatorname{area}\left(M_{1}\right) \cdot\left(c\left(\mathcal{E}_{1}\right)\right)^{2}\right)
$$

- Adding over all characteristic classes $c\left(\mathcal{E}_{1}\right)=\left[\frac{1}{2 \pi} F^{\eta} \mathcal{E}_{1}\right] \in H_{\mathrm{dR}}^{2}\left(M_{1}, \mathbb{Z}\right)$ with Euclidean action (Wick rotation) $-S_{M}$ instead of i S_{M}

$$
\frac{1}{Z} \sum_{c\left(\mathcal{E}_{1}\right) \in \mathbb{Z}} \exp \left(-2 \pi^{2} \operatorname{area}\left(M_{1}\right) \cdot\left(c\left(\mathcal{E}_{1}\right)\right)^{2}\right)
$$

Example of gluing

- M^{\prime} surface of genus $g \geq 2$ with $m \geq 1$ boundary components

$$
M=M^{\prime} \sqcup M^{\prime \prime}, \quad M^{\prime \prime}=B_{1} \sqcup \ldots B_{m}
$$

- Gluing along: $\Sigma=\partial M^{\prime}$ and $\overline{\Sigma^{\prime}}=\partial B_{1} \sqcup \ldots \partial B_{m}$:

$$
M_{1}=M^{\prime} \cup M^{\prime \prime} / \sim \Sigma
$$

Example of gluing (continued)

$$
A_{M^{\prime \prime}}=A_{\tilde{M}^{\prime \prime}} \xrightarrow{\mathbb{R}^{m}} \xrightarrow{a_{M}} A_{\partial M^{\prime \prime}}=A_{M^{\prime \prime}, \partial M^{\prime \prime}}
$$

Geometric condition on each pair $\left(\eta_{i}^{D}, \eta_{i}^{N}\right)$ for $A_{\tilde{M}^{\prime \prime}}$

$d \varphi=0$ condition on $A_{M^{\prime \prime}, \partial M^{\prime \prime}}$

- Gluing anomaly factor: $c\left(M ; \Sigma, \overline{\Sigma^{\prime}}\right)=1$
- For $\mathrm{g}=1, c\left(M ; \Sigma, \overline{\Sigma^{\prime}}\right)$ diverges as well as Z

Further exercises

- What is the precise relationship between the divergence:

$$
c\left(M ; \Sigma, \Sigma^{\prime}\right) \sim Z
$$

- Reproduce other known calculations, E.Verlinde (1995):

1. $M_{1}=\mathbb{C P}^{1} \times \mathbb{C P}^{1}$ ruled surface

$$
\frac{1}{Z} \sum_{n_{V}^{\mathcal{E}}, n_{h}^{\mathcal{E}} \in \mathbb{Z}} \exp \left[-2 \pi^{2}\left(\left(n_{h}^{\mathcal{E}}\right)^{2} \frac{r_{v}^{2}}{r_{h}^{2}}+\left(n_{v}^{\mathcal{E}}\right)^{2} \frac{r_{h}^{2}}{r_{v}^{2}}\right)\right]
$$

2. $M_{1}=\mathbb{C P}^{2}$

$$
\frac{1}{Z} \sum_{n^{\mathcal{E}} \in \mathbb{Z}} \exp \left(-2 \pi^{2}\left(n^{\mathcal{E}}\right)^{2}\right)
$$

