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Gluing (Topology and geometry)

M, OM=XY,uxXuUY’

M1:M/~Z, f(—)z, 8M1:Z1

A principal bundle Py, — M; is obtained by gluing along X from Py — M.
Similarly for a Riemannian metric gu, obtained from gu.



Spacetime system

i classical

Lagr. embeddings

l quantum

Amplitude maps

Regions - % o Hypersurfaces

({(M, P, Su)} , 1) —% ({(Z, g5, 0/0nz, Px) }x, L)

l i

({Awn € Amom}, ®) ——— ({Lagr(As, ws)}x, ®)

l |

({pm}; ) ——— ({Maps(#z, C)}z, ®)

Lagr(As,ws) = {AC A |AC A lagr., A C As symplectic}



Classical and quantum gluing rules
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Ain, € Auom (M, Pu, Su) —>— ({x},C)

~ \
oy ;\‘ . ) »AM C Ayom ——> {Lagr(As,ws)}s
7 o ————— {Maps(H2)}x

the composition of the dotted maps ()u+ — > (‘)m, | > ()5, “— ()=
preserves the partial order induced by the inclusion of hypersurfaces © C ¥4:

Lagr(As,,ws, ) Lagr(As,ws)

Maps(Hs, , C)—— Maps(Hsx, C)



Classical and quantum spacetime reconstruction

({Lagr(As, wr)}s, ©)

Classical T

My, Xk C OM]

[M, X C OM] —— [My, Ty C OMy] — Comrseh

l Quantum

({Maps(Hz, C)}s, C)



Classical gluing

For OM = X4 LIZI_If, with My = M/ ~y
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Quantum gluing

PM

Hs, @ Hy @ Hy =—= Hom ———>
N |
[ .
7 PMy
5 s
My, ——— Houm,

For {&i}ic; an orthonormal basis of Hsx
pum, () - c(M; YY) = ZPM (Y @& ®es(&))
iel

In particular for £1 = 0§, we have that 9M; = 0, therefore pu, € C.



Classical abelian YM fileds in regions

» Py — M a U(1) principal bundle
» Action on connections n € Conn(Ey), with curvature F”,

Su(n) = / A +F7
M
» For fixed n» € Conn(Pum) n = ne + ¢, has Euler-Laagrange equations
dxF"=d*xdp=0
» Gauge symmetries
f=n+df,  Su(i) = Su(n)
» (Affine) Space of solutions modulo gauge (Lorentz gauge fixing)
Au = {n=ns +dp € Conn(Py) | d*F" =0, d*p =0}
modeled over a linear space

Ly C{d*dp=0,dxp =0} C Q' (M)



Boundary conditions of YM fields

v

Dirichlet and Neumann conditions map
o€ Ly ([tpDLwN) € Q'(om)*?

Gauge action ¢° — P + df with axial gauge fixing

v

d*aMgDDZO, d*3M<pN:0

v

(Linear) space of boundary conditions of solutions modulo gauge:
Lig = ma(Lm)

Ay = m(npy) + Ly
» There is an affine fibration

aM:AMeAM



Boundary conditions on hypersurfaces

As = as.(ne) + Ls
Ly € (Q'(T)/dQ%) @ Q' (%)

Are boundary conditions modulo gauge in the bottom X x {0} of a (metric)
cylinder
Y. =% x[0,¢]

Axial gauge fixing:

Ly C (ker d*o™ /{exact}) & ker d*oM



The réle of relative topology

> If Hix(M; OM) = 0, then:

1. There is an isomorphism.
ay - AM And AM

2. Every pair ([¢P], »N) € Loy can be realized as a boundary condition for a
field ¢ € Q'(M) inside the region (not necessarily a solution), so that

m(p) = ([°], V)
> If Hx(M; dM) # 0, then:
1. There is a projection but not one-to-one

aM:AMﬁAM

2. There exists proper subspaces of topologically admissible boundary
conditions modulo gauge,

Ly € Luom S Lom, A € Amam & Aom

3. The harmonic projections of Dirichlet conditions {¢P} generate a finite
dimensional isomorphic to H}, (M; M) contained in H, (OM).



Semiclassical axiom (Complex structure)
» Recall

H (M\OM) ~ Hjx(M; M) — Hig(M) — Hiz (M) — ...

v

According to Belishev, Sharafutdinov, Shonkwiler, et. all.

Hir(M, OM) ~ (ker N'vu)* C ' (M) ~ Hix (OM)

v

Here Nvu([¢"]) = ¢" The Dirichlet-Neumann operator, for the BVP

{ Ap=0, d'¢=0¢cQ' (M)
lome = ¢, b € Q' (OM)

v

It yields a complex structure J, J? = —Id

J=( O Nt ). ker A/ {df N
= My 0 . (ker Nym/{df}) ® ran Nyy O

Luom =Ly @ JLj,
Symplectic structure:

v

v

Gom(d1, $2) = /8M &7 A xomds + Y Axomds wom(-,J-) = %gam(w)



Quantum abelian YM fields

» Linear Hilbert spaces:
H;Q{X:[z—ﬂc : |X\2u):}
holomorphic functions on a linear space

supp(vs) C Ly C hom(Ls,C)

vs gaussian with covariance 29z (-, -)

» Holomorphic functions on the affine space As = anu(ne) + Ls




Amplitude map

» Amplitude map on space of linear functions: pf; : H53, — C

Palx) = / X(6)dvm(6)

i
vu, covariance §gs (-, -)—gaussian measure
supp(vm) C Ly € Lowm
» X : Lom — C is vou measurable, not necessarily v, —measurable:
Hou C Hom
» Amplitude map for affine holomorphic wave functions: py : Hsy — C

(i) = exp (iSu(e)) / $)dum(9)



Example of amplitude map

» Let M, be a closed, 9M; = @, Riemann surface of genus g > 2 then
Ay, = Aomy, = Aomy i, = {ne}
hence

oy (1) = exp(iSu, (ne, ) = exp (2 area(Mh) - (c(&1))?)

» Adding over all characteristic classes ¢(&;) = [ F"¢1] € Hx(Mi, Z)
with Euclidean action (Wick rotation) —Sy instead of iSy

12 Z exp (—27r2area(l\/l1) : (0(51))2)

c(&q)EL



Example of gluing

» M’ surface of genus g > 2 with m > 1 boundary components
M=MuM’', M =BU...Bn
» Gluing along: ¥ = OM and ¥/ = 9By U...9Bp:
My =MUM'|~%



Example of gluing (continued)

am
AM” = AM”(H ABM” = AM”,BM”

R {(nf,n")} = R?"

Geometric condition on each pair (n°,7) for Ay,

AM’ o AM,C AM”,BM”CH ABM”
R2g+m71 Rm71 Rszz RZm

dy = 0 condition on Ay am
» Gluing anomaly factor: ¢(M; Z,%¥') = 1
» Forg=1, ¢(M;¥,Y’) diverges as well as Z



Further exercises

» What is the precise relationship between the divergence:
c(M; 2,3~ 2
» Reproduce other known calculations, E.Verlinde (1995):
1. My = CP' x CP' ruled surface
1 2 enelt el
Z > e |2 ((np)P5+ (),
né.nf ez "h v
2. My = CP?

12 > exp (—an(ng)z) )

n€ ez
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