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Piecewise reconstruction of Space-time
I Space-time regions {(M,PM ,SM )}:

1. Topology: n−dimensional manifolds, oriented, compact, probably with
boundary

2. Geometry

I Kinematics: A principal bundle PM → M
I Dynamics: Riemannian metric gM and a corresponding action

SM : Conn(PM ) → R

3. Operations: Disjoint union operation: M tM′

4. Special regions: Slice regions Σ̂.
I Hypersurfaces {(Σ, gΣ, ∂/∂nΣ,PΣ)}:

1. Topology: (n − 1)−dimensional manifolds, oriented, compact, without
boundary.

2. Geometry:

I a collar or normal structure, i.e. a germ of a Riemannian metric in a tubular
neighborhood of Σ: gΣ, partial/∂nΣ.

I A principal bundel PΣ → Σ

3. Operations:

I Disjoint union: Σ t Σ′.
I Orientation reversal: Σ 7→ Σ

4. Special hypersurfaces: boundary hypersurfaces:

Σ = ∂M, ∂Σ̂ = Σ t Σ

∂ : Regions → Hypersurfaces
P∂M → ∂M induced by PM → M
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Gluing (Topology and geometry)

M, ∂M = Σ1 t Σ t Σ′

M1 = M/ ∼ Σ, Σ′ ↔ Σ, ∂M1 = Σ1

A principal bundle PM1 → M1 is obtained by gluing along Σ from PM → M.
Similarly for a Riemannian metric gM1 obtained from gM .



Regions ∂ // Hypersurfaces

Spacetime system

classical

��

({(M,PM ,SM )} ,t)
∂ //

��

({(Σ, gΣ, ∂/∂nΣ,PΣ)}Σ,t)

��
Lagr. embeddings

quantum

��

({AM̃ ⊆ AM,∂M},⊕)
� //

��

({Lagr(AΣ, ωΣ)}Σ,⊕)

��
Amplitude maps ({ρM}, ·) � // ({Maps(H◦Σ,C)}Σ,⊗)

Lagr(AΣ, ωΣ) = {Ã ⊆ A′ | Ã ⊆ A′ lagr., A′ ⊆ AΣ symplectic}



Classical and quantum gluing rules

(M1,PM1 ,SM1 ) �
∂

))��
AM̃1
⊆ AM1,∂M1 �

))��

(M,PM ,SM )
∂ //�

gg

��

({Σ},⊆)

��
ρM1 �

**

AM̃ ⊆ AM,∂M
� //�

gg

��

{Lagr(AΣ, ωΣ)}Σ

��
ρM

� //�

gg

{Maps(H◦Σ)}Σ

the composition of the dotted maps (·)M
� // (·)M1

� // (·)Σ1
� � // (·)Σ

preserves the partial order induced by the inclusion of hypersurfaces Σ ⊆ Σ1:

Lagr(AΣ1 , ωΣ1 )
� � // Lagr(AΣ, ωΣ)

Maps(HΣ1 ,C)
� � // Maps(HΣ,C)



Classical and quantum spacetime reconstruction

({Lagr(AΣ, ωΣ)}Σ,⊆)

[M,Σ ⊆ ∂M] // [M1,Σ1 ⊆ ∂M1]
Finer

// . . .
Coarser
// [Mk ,Σk ⊆ ∂Mk ]

Quantum

��

Classical

OO

({Maps(H◦Σ,C)}Σ,⊆)



Classical gluing

For ∂M = Σ1 t Σ t Σ′, with M1 = M/ ∼Σ

AM̃1

a
M;ΣΣ′ //

##

��

AM̃

||

��

AM1,∂M1lL

{

AM,∂M� q

#

α1
oooo

A∂M1 A∂M_?i∗∂M1

oo

.



Quantum gluing

HΣ1 ⊗HΣ ⊗HΣ

����

H∂M
ρM //

��

C

HΣ1

O/

AA

H∂M1

ρM1

==

For {ξi}i∈I an orthonormal basis of HΣ

ρM1 (ψ) · c(M; Σ,Σ′) =
∑
i∈I

ρM (ψ ⊗ ξi ⊗ ιΣ(ξi ))

In particular for Σ1 = ∅, we have that ∂M1 = ∅, therefore ρM1 ∈ C.



Classical abelian YM fileds in regions

I PM → M a U(1) principal bundle
I Action on connections η ∈ Conn(EM ), with curvature Fη,

SM (η) =

∫
M

Fη ∧ ?Fη

I For fixed ηP ∈ Conn(PM ) η = ηE + ϕ, has Euler-Laagrange equations

d ? Fη = d ? dϕ = 0

I Gauge symmetries

η̃ = η + df , SM (η̃) = SM (η)

I (Affine) Space of solutions modulo gauge (Lorentz gauge fixing)

AM = {η = ηE + dϕ ∈ Conn(PM ) | d?Fη = 0, d ? ϕ = 0}

modeled over a linear space

LM ⊆ {d?dϕ = 0, d ? ϕ = 0} ⊆ Ω1(M)



Boundary conditions of YM fields

I Dirichlet and Neumann conditions map

rM : ϕ ∈ LM 7→
(

[ϕD], ϕN
)
∈ Ω1(∂M)⊕2

I Gauge action ϕD 7→ ϕD + df with axial gauge fixing

d ?∂M ϕD = 0, d ?∂M ϕN = 0

I (Linear) space of boundary conditions of solutions modulo gauge:

LM̃ = rM (LM )

AM̃ = rM (ηPM ) + LM̃

I There is an affine fibration

aM : AM → AM̃



Boundary conditions on hypersurfaces

AΣ = aΣε(ηE) + LΣ

LΣ ⊆ (Ω1(Σ)/dΩ0)⊕ Ω1(Σ)

Are boundary conditions modulo gauge in the bottom Σ× {0} of a (metric)
cylinder

Σε = Σ× [0, ε]

Axial gauge fixing:

LΣ ⊆ (ker d?∂M /{exact})⊕ ker d?∂M



The rôle of relative topology

I If H1
dR(M; ∂M) = 0, then:

1. There is an isomorphism.
aM : AM ↔ AM̃

2. Every pair ([φD ], φN ) ∈ L∂M can be realized as a boundary condition for a
field ϕ ∈ Ω1(M) inside the region (not necessarily a solution), so that

rM (ϕ) = ([φD ], φN )

I If H1
dR(M; ∂M) 6= 0, then:

1. There is a projection but not one-to-one

aM : AM → AM̃

2. There exists proper subspaces of topologically admissible boundary
conditions modulo gauge,

LM̃ ⊆ LM,∂M ( L∂M , AM̃ ⊆ AM,∂M ( A∂M

3. The harmonic projections of Dirichlet conditions {ϕD} generate a finite
dimensional isomorphic to H1

dR(M; ∂M) contained in H1
dR(∂M).



Semiclassical axiom (Complex structure)

I Recall

H1
c (M\∂M) ' H1

dR(M; ∂M)→ H1
dR(M)→ H1

dR(∂M)→ ...

I According to Belishev, Sharafutdinov, Shonkwiler, et. all.

H1
dR(M, ∂M) ' (kerNYM )⊥ ⊆ H1(∂M) ' H1

dR(∂M)

I Here NYM ([ϕD]) = ϕN The Dirichlet-Neumann operator, for the BVP{
∆ϕ = 0, d?ϕ = 0, ϕ ∈ Ω1(M)

i∗∂Mϕ = φ, φ ∈ Ω1(∂M)

I It yields a complex structure J, J2 = −Id

J =

(
0 −N−1

YM
NYM 0

)
: (kerNYM/{df})⊕ ranNYM 	

I LM,∂M = LM̃ ⊕ JLM̃

I Symplectic structure:

g∂M (φ1, φ2) =

∫
∂M
φD

1 ∧ ?∂Mφ
D
2 + φN

1 ∧ ?∂Mφ
N
2 , ω∂M (·, J·) =

1
2

g∂M (·, ·)



Quantum abelian YM fields

I Linear Hilbert spaces:

HL
Σ ⊆

{
χ : L̂Σ → C :

∫
L̂Σ

|χ|2νΣ

}
holomorphic functions on a linear space

supp(νΣ) ⊆ L̂Σ ⊆ hom(LΣ,C)

νΣ gaussian with covariance 1
2 gΣ(·, ·)

I Holomorphic functions on the affine space ÂΣ = aM (ηE) + L̂Σ

HΣ
∼ // HL

Σ

ψ(ϕ) = χηE (ϕ) · αηEΣ (ϕ)
� // χηE (ϕ)



Amplitude map

I Amplitude map on space of linear functions: ρL
M : HL◦

∂M → C

ρL
M (χ) =

∫
L̂M̃

χ(φ)dνM (φ)

νM , covariance 1
4 gΣ(·, ·)−gaussian measure

supp(νM ) ⊆ L̂M̃ ⊆ L̂∂M

I χ : L̂∂M → C is ν∂M measurable, not necessarily νM̃−measurable:

HL◦
∂M ( HL

∂M

I Amplitude map for affine holomorphic wave functions: ρM : HL◦
∂M → C

ρM (ψ) = exp (iSM (ηE))

∫
L̂M̃

χηE (φ)dνM (φ)



Example of amplitude map

I Let M1 be a closed, ∂M1 = ∅, Riemann surface of genus g ≥ 2 then

AM̃1
= A∂M1 = A∂M1,M1 = {ηE}

hence

ρM1 (ψ) = exp(iSM1 (ηE1 )) = exp
(

i2π2area(M1) · (c(E1))2
)

I Adding over all characteristic classes c(E1) =
[ 1

2πFηE1
]
∈ H2

dR(M1,Z)
with Euclidean action (Wick rotation) −SM instead of iSM

1
Z

∑
c(E1)∈Z

exp
(
−2π2area(M1) · (c(E1))2

)



Example of gluing

I M ′ surface of genus g ≥ 2 with m ≥ 1 boundary components

M = M ′ tM ′′, M ′′ = B1 t . . .Bm

I Gluing along: Σ = ∂M ′ and Σ′ = ∂B1 t . . . ∂Bm:

M1 = M ′ ∪M ′′/ ∼ Σ



Example of gluing (continued)

AM′′ = AM̃′′
� � aM // A∂M′′ = AM′′,∂M′′

Rm {(ηD
i , η

N
i )} = R2m

Geometric condition on each pair (ηD
i , η

N
i ) for AM̃′′

AM′OO

��

aM′ // // AM̃′
� � //
OO

��

AM′′,∂M′′
� � //

OO

��

A∂M′′OO

��
R2g+m−1 Rm−1 R2m−2 R2m

dϕ = 0 condition on AM′′,∂M′′

I Gluing anomaly factor: c(M; Σ,Σ′) = 1
I For g = 1, c(M; Σ,Σ′) diverges as well as Z



Further exercises

I What is the precise relationship between the divergence:

c(M; Σ,Σ′) ∼ Z

I Reproduce other known calculations, E.Verlinde (1995):

1. M1 = CP1 × CP1 ruled surface

1
Z

∑
nEv ,n

E
h ∈Z

exp

[
−2π2

(
(nEh )2 r2

v

r2
h

+ (nEv )2 r2
h

r2
v

)]
,

2. M1 = CP2

1
Z

∑
nE∈Z

exp
(
−2π2(nE)2

)
.
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