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Klein-Gordon Theory

Classical Theory

We consider a real scalar field theory in Minkowski spacetime with

the action
/ d'x ((0,0)0"¢ - m*¢?).

The equations of motion are given by the Klein-Gordon equation:
(0 +m?)¢ = 0.

We take the spaces of solutions associated to hypersurfaces and
regions to be vector spaces of real valued functions:

o Ly :={¢:> >R} (Cisa thickening of ¥)
o Ly :={¢: M —> R}
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Klein-Gordon Theory

Standard geometry — spacelike hypersurplanes (I)

A
fy s ,:/¢2
Consider constant-time :

M N
hypersurfaces and ;
time-interval regions asin  #i? <
the standard formulation. —> 1

Consider an constant-time hypersurface at time . Expanding in
Fourier modes, elements of L; are conveniently parametrized in terms

of functions on momentum space,

dk . .
¢(t, x) = / m (qﬁ(k)e*l(Efka) + ¢(k)el(Et7kx)) .
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Klein-Gordon Theory

Standard geometry — spacelike hyperplanes (II)

The Lagrangian gives rise to the symplectic form,

wi(P1, ¢2) = /d3 (¢2(t, x)d0¢1(t, x) = ¢1(t, x)doda(t, X))

- %/ (2:;;{215 ("52@

The standard complex structure is,

U(¢))(k) = —ig (k).

This yields the complex inner product,

3
02k =2 [ S 0 W)

1) = 61k 42(K) )

L becomes the one-particle Hilbert space.
‘H; is the space of wave functions or Fock space over L;. J
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S-matrix

Usually, interacting QFT is described via the S-matrix:

;:;i f ot M <« asymehAc
free shAS . . .
=\ Assume interaction is relevant only
\ 74 after the initial time t; and before
idemediate | = < 2o the final time t5. The S-matrix is
dime reyian s 1.
R the asymptotic limit of the

\%{ X amplitude between free states at

early and at late time:
eorly A & aspmptohic
Hme ¢t free shtes

W2lSly1) = tIILTmW?Wint[tlv ta]l1)

to——+o00

Robert Oeckl (CCM-UNAM) Klein-Gordon theory and the generalized S-m 2018-08-22 5/18



Klein-Gordon Theory

Standard geometry — scattering

Particles, i.e., elements of L;, can
be characterized by 3 quantum
numbers: the components p; of
the 3-momentum. Moreover,
each particle is part of either
the in-state or the out-state.
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Klein-Gordon Theory

Standard geometry — scattering

A z ;‘ " Particles, i.e., elements of L;, can
LGS out =1 pe characterized by 3 quantum
e dien numbers: the components p; of
N the 3-momentum. Moreover,
T ———f—— "¢ each particle is part of either
1L_l‘__.——’—————j( the in-state or the out-state.

Denote ¢/ (p1, . . ., pu) the n-particle state with momenta p, ..., p, in ‘H.

’

The probability to find outgoing particles with momenta p7, ..., p;,
given incoming particles P1,...,Pn s,

WP pp) U (prs . o))
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Klein-Gordon Theory

Timelike Hyperplanes (I)

A [r—— o
t
Consider hypersurfaces | ¢
with constant x; coordinate _~ M
and corresponding il
space-interval regions. >

Parametrize solution near constant x; hypersurface,

N dE d%k S i —
Pt x1.%) = /52 i2me (2m)32k, ( (E, k)e {ERhx) g ( ) lF km))
> m

where x := (XQ,Xg),]N( = (kg,kg), k1 = |E2 —l~<2 —m2|.
Note that the sign of E can be negative.
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Klein-Gordon Theory

Timelike Hyperplanes (I)

A [r—— o
t
Consider hypersurfaces | ¢
with constant x; coordinate _~ M
and corresponding il
space-interval regions. >

Parametrize solution near constant x; hypersurface,

- dE d% C (BT (B
pha) = /m a2 (21)32K; (9(E Ryt Ertimboss) () elE-Kizki))
> m

where x := (XQ,Xg),]N( = (kg,kg), k1 = |E2 —l~<2 —m2|.
Note that the sign of E can be negative.

These are the propagating waves: E2 > k% ++ m?, oscillate in space J
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Klein-Gordon Theory

Timelike Hyperplanes (II)

There are also evanescent waves: E? < k? + m?, exponential in space J

o dE d%k o T\ kx| (k)
(L, x1,X) = ‘/52<k2+m2 (27r)—32k1 (¢+(E7 k)e™*t + ¢_(E, k)e )e ;

with ¢ (E,k) = ¢.(—E, —k).
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Klein-Gordon Theory

Timelike Hyperplanes (II)

There are also evanescent waves: E? < k? + m?, exponential in space J

dE d2k

X) = " JAVLSEST T o—kix1 | i(Et—k%)
& (t, x1,X) ‘/52<k2+m2 on)%k, (¢+(E, k)e"** + ¢_(E, k)e )e ,

with ¢ (E,k) = ¢.(—E, —k).

The space of solutions decomposes as Ly, = LY, & L¢ .
The space of states is a tensor product Hy, = Hy, ® HE,.
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Klein-Gordon Theory

Timelike Hyperplanes (III)

The construction of HY based on L}, parallels the spacelike case.

The Lagrangian gives rise to the symplectic form,

1
n, (01002) = =5 [ & (02000000, 01(8%) = 9182104, ()

i 27 B _ ~
- 5/(;;—?2;; (¢2(E,k)¢1(E,k) —¢1(E,k)¢2(g,k>)_

The standard complex structure is,

(J(¢))(E.k) = —ig(E.k).

This yields the complex inner product,

dE d% . -
{#1, p2}x, = 2/ (27_[)—32k1¢1(E,k)¢2(E,k).
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Klein-Gordon Theory

Timelike Hyperplanes (IV)

The construction of H, is an open problem.
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Klein-Gordon Theory

Timelike Hyperplanes (IV)

The construction of H, is an open problem.

A vacuum can be defined in H, [D. Colosi, RO 2007], but the existence
and properties of particle states remain unclear.
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Klein-Gordon Theory

Timelike Hyperplanes (IV)

The construction of H, is an open problem.

A vacuum can be defined in H, [D. Colosi, RO 2007], but the existence
and properties of particle states remain unclear.

While a complex structure can be defined on L%, [RO 2010], this does
not seem to have the right physical properties.
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Klein-Gordon Theory

Timelike Hyperplanes (IV)

The construction of H, is an open problem.

A vacuum can be defined in H, [D. Colosi, RO 2007], but the existence
and properties of particle states remain unclear.

While a complex structure can be defined on L%, [RO 2010], this does
not seem to have the right physical properties.

...but recently, progress is being made [D. Colosi, RO], stay tuned!
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Klein-Gordon Theory

Timelike Hypersurfaces — scattering

V7 Ton bl
CD\* - / (75:‘1 wal e
,1(\{4\J€ E‘.’_ f [n‘.’,

e
‘r’q,.,fh(/p

Particles can be characterized
by 3 quantum numbers: the
momenta ko, k3 and the energy
E. Recall that E may be
negative. This yields the same
degrees of freedom as in the
> spacelike case.

shale slate

But, in contrast to the spacelike case there is no notion of in-state or
out-state. Rather each particle in a multi-particle state might
individually be either in-going or out-going. This is what the sign of
the energy E encodes.
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Klein-Gordon Theory

Timelike Hypersurfaces — probabilities

The boundary solution space decomposes as Loy = Ly, @ fol .
The boundary Hilbert space decomposes as Haoy = Hy, ® Hy, .
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Klein-Gordon Theory

Timelike Hypersurfaces — probabilities

The boundary solution space decomposes as Loy = Ly, @ fol .
The boundary Hilbert space decomposes as Haoy = Hy, ® Hy, .

For each hypersurface there is also a decomposition into in-going and
out-going particle modes. For the boundary as a whole,
Lom = Lin ® Lout and Hoy = Hin ® Hout.-
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Klein-Gordon Theory

Timelike Hypersurfaces — probabilities

The boundary solution space decomposes as Loy = Ly, @ Ly, .
The boundary Hilbert space decomposes as Haoy = Hy, ® Hy, .

For each hypersurface there is also a decomposition into in-going and
out-going particle modes. For the boundary as a whole,
Lom = Lin ® Lout and Hoy = Hin ® Hout.-

Denote the density matrix in 85y for n in-going particles with
quantum numbers (E, l~c1) ooy (Eps INCH) and m out-going particles

(E7, l~<i) o (ELLK) by o((Enki)...; (E7, l~ci) ...), with same in-going
but indeterminate out-going particles by, o-((E1. k1) . . . ; ).

The probability for observing the out-going particles (E7, I~<i) ... given
the in-going particles are (Eq, k1) . . . is,
Am(o((Ev ki) - (Enkn); (E1,K)) ..

9
AM(O-((Ela kl) B (En’ ki’l)’ *))
Klein-Gordon theory and the generalized S-m 2018-08-22 12/18
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Klein-Gordon Theory

Timelike Hypercylinder (I)

Consider a hypercylinder given by a sphere of
radius R in space, extended over all of time.

Parametrize propagating solutions (E? > m?)
near constant R hypersurface, (I =0,1,...,
m——l—l+1,...])

_ P —iEtym
amm-@m&M;wwwwm YI'(©)

+ () (pre=Y;(€2))

Here Y]" denote the spherical harmonics and p := /|E? — m?|. Also,
h; = j; + in;, where j; and n; are the spherical Bessel functions of the
first and second kind respectively.
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Klein-Gordon Theory

Timelike Hypercylinder (II)

In the massive case m > 0, there are also evanescent solutions for
E? < m?, with exponential behaviour in space.

o(t1.) / deL —ﬂftzw ) (@50 EVelpr) + 4}, (EYe(pr))

1)
Here Y}" denote the spherical harmonics and p := +/|E? — m?|. Also,

ki(z) = —ilnh(iz) /2 and k;(z) = k;(~z) are modified spherical Bessel
functions that are real on R.
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Klein-Gordon Theory

Timelike Hypercylinder (II)

In the massive case m > 0, there are also evanescent solutions for
E? < m?, with exponential behaviour in space.

o(t1.) / deL —ﬂftzw ) (@50 EVelpr) + 4}, (EYe(pr))

1)
Here Y}" denote the spherical harmonics and p := +/|E? — m?|. Also,

ki(z) = —ilnh(iz) /2 and k;(z) = k;(~z) are modified spherical Bessel
functions that are real on R.

The space of solutions decomposes as Lg = Lf{ ® L%-
The space of states is a tensor product Hr = ?(Ilg ® Hy.
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Klein-Gordon Theory

Timelike Hypercylinder (III)

We restrict considerations to propagating solutions.

The Lagrangian gives rise to the symplectic form,
R2
wr($, &) = - /dt dQ (¢(t, R, Q)0,¢(t, R, Q) — ¢(t, R, 2)0,£ (LR, Q))

- [ael ) (¢4 (E)En(B) ~ Bun(EVin(E))

The standard complex structure is,

(](¢))lm (E) = i¢l,m(E)'

This yields the complex inner product,

o= ALY 0 BtinE)
Lm
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Klein-Gordon Theory

Timelike Hypercylinder

tf /- T_T t h To go beyond standard transition amplitudes,
! M ] consider an example with a connected boundary.
N~—| T
- ¥ [RO 2005]
| o M=RxB,
4
| N | o OM =X =R xS2.
; K\_/ } R
.\i(/— J/./ (Consider propagating waves only.)
———>

o The state space Hs;, is again a Fock space.

@ A particle can be characterized by three quantum numbers:
energy E and angular momentum /, .

@ The sign of the energy determines if a particle is in-going or
out-going. The state space decomposes as Hs, = Hin ® Hout-

@ This decomposition is neither geometrical nor temporal.
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Spatially asymptotic S-matrix (I)

interaction
t ’ 1—+f region
”
/

ez
|—>

]

| asymptotic

g_, free
states
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Similarly, we can describe
interacting QFT via a spatially
asymptotic amplitude. Assume
interaction is relevant only
within a radius R from the
origin in space (but at all
times). Consider then the
asymptotic limit of the
amplitude of a free state on the
hypercylinder when the radius
goes to infinity:

SW) = lim pr(¥)

R—o0

[D. Colosi, RO 2007-2008]
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Spatially asymptotic S-matrix (II)

Results:

o The perturbative description of interactions works as in the
standard path integral and S-matrix picture. Technically, the
interactions are introduced via sources. In the hypercylinder
geometry, this involves evanescent modes in an essential way,
even if they vanish asymptotically.

@ The S-matrices are equivalent when the interaction is confined in
space and time. This equivalence is realized through an
isomorphism of the asymptotic state spaces.

@ In the standard formulation, crossing symmetry is an emergent
feature of the S-matrix. In the hypercylinder setting of the GBF
crossing symmetry is manifest.
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