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Motivation

Quantum Yang-Mills theory in 2 dimensions is an excellent toy
example to study in the GBF because

it is non-linear, different from linear examples,
its is solvable, making quantization tractable,
exhibits non-abelian gauge symmetry, such as QCD,
allows for quantization with corners.
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Overview

1 Review of TQFT axioms

2 The significance of corners

3 TQFT in two dimensions

4 Schrödinger-Feynman quantization

5 Quantization of Yang-Mills theory
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TQFT – manifolds
Fix dimension d. Manifolds are oriented and may carry additional
structure: differentiable, metric, complex, etc.

M

Σ′

∂M
Σ̂

Σ

Σ

region M
d-manifold with boundary.

hypersurface Σ

d − 1-manifold with boundary,
with germ of d-manifold.

slice region Σ̂

d − 1-manifold with boundary,
with germ of d-manifold,
interpreted as “infinitely thin”
region.
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TQFT – axioms I

Assignment of algebraic structures to geometric ones.

H∂M

ρMM

HΣ

Σ

∂M

(T1) per hypersurface Σ

A complex vector space HΣ.
(state space)

H∅ = C.

(T4) per region M
A linear map H∂M → C.
(amplitude map)
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TQFT – axioms II

→

HΣ1

HΣ2

HΣ⊗

Σ̂

η

ψ

(T1b) per hypersurface Σ

A conjugate linear involution ιΣ : HΣ → HΣ.

(T2) per hypersurface decomposition
Σ = Σ1 ∪ Σ2

A partial isometry τ : HΣ1 ⊗ HΣ2 → HΣ.

(T3x) per hypersurface Σ

The amplitude map gives rise to a
positive-definite inner product
⟨ιΣ(ψ), η⟩Σ := ρΣ̂ ◦ τ(ψ ⊗ η).
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TQFT – axioms III

(T5a) per disjoint composition of regions M = M1 ⊔ M2

ρM(τ(ψ1 ⊗ ψ2)) = ρM1(ψ1)ρM2(ψ2). We write ρM = ρM1 ⋄ ρM2 .

(T5b) per self-composition of region M to M1 along Σ

ρM1(ψ) · cM,Σ =
∑

k ρM(τ(ψ ⊗ ζk ⊗ ιΣ(ζk))). We write ρM1 = ⋄ρM.

M

Σ

Σ1

ιΣ(ζk)ζk

ψ

=
∑

k
Σ′

M1

Σ

Σ1

ψ

{ζk}k∈I ON-basis of HΣ. cM,Σ gluing anomaly.
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Why corners?

If we are serious about describing physics locally we need to allow
compact spacetime regions that may be considered arbitrarily small.

What is more, we need to study the interaction between small
neighboring regions. In the GBF this means we need to be able to glue
small regions together.

The generic topology of a small region is that of a ball.

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

We need to be able to glue two
ball-shaped regions to a single
ball-shaped region. This requires
gluing along parts of boundaries.

This introduces (virtual) corners where boundaries are split. These are
boundaries of boundaries.

This is also crucial in renormalization.
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Why corners?

If we are serious about describing physics locally we need to allow
compact spacetime regions that may be considered arbitrarily small.

What is more, we need to study the interaction between small
neighboring regions. In the GBF this means we need to be able to glue
small regions together.

The generic topology of a small region is that of a ball.
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Renormalization identities

topological
Relates regions of the
same type. There is only
one elementary region.

differentiable
Relates regions of the
same type. Regions have
corners.

metric
Relates regions of
different sizes. Link to
coupling constant
renormalization.
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Corners

topological
Corners are
homeomorphic to
smooth hypersurfaces.

differentiable
Corners of different
angles are
diffeomorphic, but
distinct from smooth
hypersurfaces.

metric
Corners of different
angles are all distinct.
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Two dimensions (topological): hypersurfaces

There are two types of elementary hypersurfaces (T1):

an open string with
state space HO

a closed string with
state space HC

We also assign ιO : HO → HŌ and ιC : HC → HC̄ (T1b).

There are two types of elementary decompositions (T2):
open string to two
open strings τOO : HO ⊗HO → HO

closed string to an
open string τOC : HO → HC

Remarks: τOO must be associative, τOC ◦ τOO must be commutative
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Two dimensions (topological): regions
Any connected region is a Riemann surface with holes. It is
characterized by two non-negative integers, the genus g and the
number of holes n.

There is only one type of elementary region, the disc
D with amplitude ρD : HC → C (T4).

The slice region associated with an open string can be thought of as a
squeezed disc:

This gives rise to a bilinear pairing
HO ⊗ HO → C defined by

(·, ·)O = ρ̂D := ρD ◦ τOC ◦ τOO

By axiom (T3x) this is related to the inner
product on HO via ⟨·, ·⟩O = (ιO(·), ·)O.
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Two dimensions (topological): gluing
Gluing two discs to a new disc imposes consistency conditions on the
disc amplitude via axiom (T5).

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � � Let {ζ }i∈I be an ON-basis of HO.

Then:

ρ̂D(ψ⊗η) =
∑

i
ρ̂D(ψ⊗ζi)ρ̂D(ιO(ζi)⊗η)

This is the renormalization identity for topological manifolds.

Any connected region can be obtained by gluing a disc with a suitably
subdivided boundary to itself. Consider the cylinder:

ρcyl ◦ (τOC ⊗ τOC)(ψ ⊗ η)
=

∑
i
ρD ◦τOC ◦τ◦(τOO ⊗ τOO)(ψ⊗ ζi ⊗η⊗ ιO(ζi))
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Review of Schrödinger-Feynman quantization
Data of classical field theory

A configuration space KΣ per hypersurface Σ.
A configuration space KM per region M.
An action SM : KM → R per region M.

Data of quantum field theory
(T1) The state space HΣ = C(KΣ) is the space of square integrable
functions on KΣ with ⟨ψ, η⟩ =

∫
KΣ

Dφ ψ(φ)η(φ).
A field propagator ZM : K∂M → C per region M given by

ZM(φ) =

∫
KM,ϕ |∂M=φ

Dϕ eiSM(ϕ).

(T4) The amplitude ρM : H∂M → C per region M is

ρM(ψ) =

∫
KΣ

Dφ ψ(φ)ZM(φ).
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Classical Yang-Mills theory

The gauge group G is a compact connected and simply connected Lie
group. Consider trivial principal G-bundles over hypersurfaces and
regions. Regions carry a metric.

KΣ is the space of connection 1-forms A on the hypersurface Σ.
KM is the space of connection 1-forms A on the region M.
The action on a region M is:

SM(A) = − 1

γ2

∫
M

tr(F ∧⋆F)

▶ F is the curvature 2-form of A
▶ γ is the coupling constant

Gauge symmetry: Two connection 1-forms related by a gauge
transformation (change of trivialization) are physically equivalent. A
gauge transformation in M may be parametrized as a map M → G.
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Quantizing Yang-Mills theory

We restrict to two dimensions. Consider a disc-shaped region M with
boundary Σ ≈ S1. Let AΣ ∈ KΣ.

ZM(AΣ) =

∫
KM,A |Σ=AΣ

DA eiSM(A).

Due to gauge invariance, ZM(AΣ) only depends on the holonomy
g ∈ G of AΣ. Furthermore, it really only depends on the conjugacy
class of g.
In two dimensions SM(A) depends not on the full metric, but only
on its area form. Moreover, by diffeomorphism invariance of DA,
ZM(AΣ) depends only on the total area of M. What is more, the
differentiable structure of M does not play any role.
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Results – State spaces

A region is a pair (M, s) of a compact topological 2-manifold M
and a non-negative real number s (the area).
A hypersurface is a compact topological 1-manifold.
The physical configuration space K′

C for the closed string is the
space of conjugacy classes of G.
The physical configuration space K′

O for the open string is the
space of elements of G. (Gauge transformations must act
identically at endpoints.)

The normalized invariant measure on G is the Haar measure dg.
HO = C(G) complex functions on G with inner product
⟨ψ, η⟩ =

∫
dgψ(g)η(g).

HC = Cclass(G) ⊆ C(G) is the space of class functions, i.e.,
functions invariant under conjugation.
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Basis

An orthogonal basis for C(G) is given by matrix elements of
simple representations. Thus, for any simple representation V
choose a basis {vi}. Denote the dual basis of V∗ by {v∗i }. Then set

tV
ij (g) := (v∗i , g ▷ vj).

An orthogonal basis for the subspace Cclass(G) is given by
characters, defined by

χV(g) :=
∑

i
tV
ii (g).

The inner product on C(G) is

⟨tV
ij , t

W
mn⟩ = δV,Wδi,mδj,n

1

dim V
, ⟨χV, χW⟩ = δV,W.
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Decomposition maps (I)

Decomposition maps:
Open string to two open strings: τOO : HO ⊗ HO → HO

(τOO(ψ ⊗ η)) (g) =
∫

dg1dg2 ψ(g1)η(g2)δ(g1g2, g)

=

∫
dhψ(gh)η(h−1) =

∫
dhψ(h)η(h−1g).

Closed string to open string: τOC : HO → HC

(τOC(ψ)) (g) =
∫

h∈[g]
dhψ(h) =

∫
dhψ(hgh−1).

Integrals can be thought of as projections onto gauge invariant states.
As required, τOO is associative and τOC ◦ τOO is commutative.
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Decomposition maps (II)

In terms of matrix elements we get:

τOO(tV
ij ⊗ tW

mn) = δV,Wδj,m
1

dim V
tV
in.

τOC(tV
ij ) = δi,j

1

dim V
χV.

Robert Oeckl (CCM-UNAM) 2d quantum Yang-Mills with corners 2018-09-12 20 / 25



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Disc amplitude

Recall that the propagator for the disc D is a class function of the
holonomy. Hence it can be expanded in characters:

Z(D,s)(g) =
∑
V

dim VαV(s) χV(g).

The sum runs over all simple representations V of G and αV : R+ → C
are functions depending on the area s. The amplitude ρ(D,s) : HC → C
is thus:

ρ(D,s)(ψ) =
∑
V

dim VαV(s)
∫

dg χV(g)ψ(g).

In terms of matrix elements:

ρ(D,s)(χ
V) = dim VαV(s).
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Consistency conditions
1 Applying axiom (T3x) to the squashed disc (with area s = 0) fixes

(up to a choice of sign) axiom (T1b) for the open string

(ιO(ψ))(g) = ψ(g−1), ιO(tV
ij ) = tV

ji .

2 At the same time this fixes αV(0) = 1, ∀V.
3 Consistency then yields for the closed string

(ιC(ψ))(g) = ψ(g−1), ιC(χ
V) = χV.

4 Applying axioms (T5a), (T5b), gluing a disc of area s and a disc of
area t to a disc of area s + t yields αV(s)αV(t) = αV(s + t), ∀V.

5 2 + 4 + continuity then yield for unknown βV:
αV(s) = exp(s βV).

6 Unitarity requires the βV to be imaginary.
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General regions

Gluing a disc to itself after suitably decomposing its boundary yields
the amplitude for all Riemann surfaces with holes. Let g be the genus,
n > 0 the number of holes and s the area. Then,

ρg,n,s(χ
V1 ⊗ · · · ⊗ χVn) = δV1,...,Vn exp(s βV1) (dim V1)

2−2g−n.

For the case of a closed Riemann surface we get

ρg,0,s =
∑
V

exp(s βV) (dim V)2−2g.

This sum might be ill defined since generally there are infinitely many
inequivalent simple representations.
To have a well defined theory we might have to exclude certain gluings
and closed manifolds. Typically (depending on the coefficients βV) this
sum is ill defined for g = 0 (sphere) g = 1 (torus).

Recovers results from [Witten, …1990] obtained without corners.
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The constants βV

A more detailed analysis of the action and the propagator shows that
βV should take the form

βV =
i
4
γ2CV,

where CV is the value of the quadratic Casimir operator on the
representation V.
For example:

G = U(1): simple reps. k ∈ Z, dim Vk = 1, Ck = k2

G = SU(2): simple reps. j ∈ 1
2N0, dim Vj = 2j + 1, CV = 2j(j + 1)
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Discussion [2006]

Quantum Yang-Mills theory provides a successful realization of
the axioms in two dimensions, including infinite dimensional
state spaces and corners.
The Yang-Mills example provides insight into the role of gauge
symmetries in relation to the axioms.
The axioms provide strong consistency conditions, severely
constraining possible theories.

Outlook
Apply axioms to more complicated theories in two dimensions,
e.g. to conformal field theory.
Are the axioms suitable in higher dimensions? Or should they be
extended or modified? Apply to higher dimensional theories to
find out.
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