
The field theory of free fermions – classical theory

Robert Oeckl

Centro de Ciencias Matemáticas
Universidad Nacional Autónoma de México

Morelia, Mexico

Seminar General Boundary Formulation
26 September 2018

. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .... .. .. .. .



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Outline

1 Overview

2 Classical field theory
Mini-review of the bosonic case
Fermionic field theory

3 Krein spaces

4 Emergent time

5 The Dirac field theory
Real inner product and decomposition
Spacelike hypersurfaces
Timelike hypersurfaces
Algebraic vs geometric time
Plane waves
Complex structure

Robert Oeckl (CCM-UNAM) Free fermions – classical theory 2018-09-26 2 / 24



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Overview

So far in this seminar all talks have been essentially limited to the
treatment of purely bosonic theories. Today we shall consider
fermionic theories. We restrict ourselves to the simplest case of
free field theory.
In contrast to the bosonic case we can not directly use the
powerful holomorphic quantization approach since there is no
comparable notion of coherent state. Instead we shall use a Fock
space approach. Bosonic and fermionic theories can then be
treated in a unified way. Moreover, in the bosonic case, both
approaches are equivalent.
As in the bosonic case the basic ingredients in the fermionic case
ca be motivated from geometric quantization.
As with holomorphic quantization this leads to a rigorous and
functorial quantization scheme.
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Surprising results
Carrying out the program outlined on the previous slide leads to a
number of striking and unexpected results about fermionic quantum
field theory that do not hold in the bosonic case:

Hilbert spaces are generalized to Krein spaces.
This arises both from consistency conditions and from standard
examples. It turns out to be compatible with the probability
interpretation in the presence of superselection rules.

A notion of time emerges without necessity for a metric.
This is true both in the classical and in the quantum theory.

The gluing anomaly can be renormalized.
As in the bosonic case a gluing anomaly exists. But here it can be
renormalized so that no integrability condition needs to be imposed.
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Semiclassical theory

Today, we shall limit ourselves to semiclassical theory. Next time we
shall consider the quantum theory.
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Mini-review: Bosonic field theory (I)

Formulate field theory in terms of first order Lagrangian density
Λ(φ, ∂φ, x). Recall the symplectic form,

(ωΣ)ϕ(X,Y) = −1

2

∫
Σ

(
(XbYa − YbXa) ∂µ⌟

δ2Λ

δφbδ ∂µφa (ϕ)

+(Ya∂νXb − Xa∂νYb) ∂µ⌟
δ2Λ

δ ∂νφbδ ∂µφa (ϕ)

)
.

In the case of linear field theory this is a bilinear form on the space LΣ

of germs of solutions on the hypersurface Σ. We suppose that ωΣ is
non-degenerate.

The symplectic form arises from the integral of a (d − 1)-form on a
hypersurface. Its sign thus depends on orientation: ωΣ = −ωΣ .
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Mini-review: Bosonic field theory (II)
The key additional ingredient for the geometric quantization on a
hypersurface is the complex structure JΣ : LΣ → LΣ. Recall that this
has to satisfy J2Σ = −1 and ωΣ(JΣ·, JΣ·) = ωΣ(·, ·).

The complex structure encodes a kind of global orientation. Its sign
thus depends on orientation: JΣ = −JΣ .

Let M be a region and LM the space of solutions in M. Then we have a
natural map LM → L∂M by “forgetting” the solution in the interior of
M. Recall the following key property for encoding the classical
dynamics.

LM induces a Lagrangian subspace of L∂M:

ω∂M(ϕ, ϕ′) = 0 for all ϕ, ϕ′ ∈ LM.
If ϕ < LM then there is ϕ′ ∈ LM such that ω∂M(ϕ, ϕ′) , 0.
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Mini-review: Bosonic field theory (III)

Spacetime is modeled by a collection of hypersurfaces and regions.

L∂M

LMM

LΣ , ωΣ , JΣ

Σ

∂M

To these geometric structures
associate the classical data,

per hypersurface Σ :
a symplectic vector space
(LΣ , ωΣ),
per region M :
a Lagrangian subspace
LM ⊆ L∂M.

In addition,
per hypersurface Σ :
a complex structure JΣ .
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Fermionic field theory (I)

Starting with a Lagrangian density Λ we obtain a symplectic form ω̃Σ

associated to any hypersurface Σ as in the bosonic case.

A fermionic field is generally a section of a complex vector bundle
(associated with the spin bundle). The associated complex structure
can be used to produce a symmetric bilinear form gΣ from ω̃Σ. This
(and not ω̃Σ) is the “correct” object to encode fermionic field theory:

gΣ(X,Y) = 2ω̃Σ(X, iY)

(gΣ can be also be derived directly by already taking into account the
“anti-commuting” nature of the fermionic field at the classical level.)

The symmetric form gΣ arises from the integral of a (d − 1)-form on a
hypersurface. Its sign thus depends on orientation: gΣ = −gΣ .
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Fermionic field theory (II)
As in the bosonic case the additional ingredient for the geometric
quantization on a hypersurface is the complex structure JΣ : LΣ → LΣ.
This has to satisfy J2Σ = −1 and gΣ(JΣ·, JΣ·) = gΣ(·, ·).

As in the bosonic case, the complex structure encodes a kind of global
orientation. Its sign thus depends on orientation: JΣ = −JΣ .

Let M be a region and LM the space of solutions in M. Then we have a
natural map LM → L∂M by “forgetting” the solution in the interior of
M. The following key property encodes the classical dynamics.

LM induces a hypermaximal neutral subspace of L∂M:

g∂M(ϕ, ϕ′) = 0 for all ϕ, ϕ′ ∈ LM.
If ϕ < LM then there is ϕ′ ∈ LM such that g∂M(ϕ, ϕ′) , 0.

There is a compatibility condition between J∂M and LM.
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Fermionic field theory (III)

Spacetime is modeled by a collection of hypersurfaces and regions.

L∂M

LMM

LΣ , gΣ , JΣ

Σ

∂M

To these geometric structures
associate the classical data,

per hypersurface Σ :
a real Krein space (LΣ , gΣ),
per region M :
a hypermaximal neutral
subspace LM ⊆ L∂M.

In addition,
per hypersurface Σ :
a complex structure JΣ .
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Comparison of structures per hypersurface

In the bosonic and fermionic case a complex inner product is induced:

gΣ(ϕ, ϕ′) = 2ωΣ(ϕ, JΣϕ′) ωΣ(ϕ, ϕ
′) =

1

2
gΣ(JΣϕ, ϕ′)

{ϕ, ϕ′}Σ := gΣ(ϕ, ϕ′) + 2iωΣ(ϕ, ϕ
′)

bosonic theory fermionic theory
basic structures ωΣ, JΣ gΣ, JΣ
derived structures gΣ, {·, ·}Σ ωΣ, {·, ·}Σ
orientation change JΣ = −JΣ,

ωΣ = −ωΣ, gΣ = gΣ,
{·, ·}Σ = {·, ·}Σ

JΣ = −JΣ,
ωΣ = ωΣ, gΣ = −gΣ,

{·, ·}Σ = −{·, ·}Σ
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Krein spaces

Orientation change: gΣ = −gΣ.
LM ⊆ L∂M hypermaximal neutral subspace implies:
g∂M(ϕ, ϕ′) = 0 if ϕ, ϕ′ ∈ LM.

→ The inner product gΣ cannot be positive definite in general.

The spaces (LΣ , gΣ) and (LΣ , {·, ·}Σ) are real and complex Krein
spaces. They decompose as an othogonal direct sum,

LΣ = L+
Σ ⊕ L−

Σ.

L+
Σ is positive definite and L−

Σ is negative definite.
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Ecoding dynamics

The dynamics in a region M can be encoded equivalently:

Through a hypermaximal neutral subspace LM ⊆ L∂M
Through a real linear map uM : L∂M → L∂M that is
▶ (a) involutive,
▶ (b) is an anti-isometry,
▶ (c) interchanges L+

∂M and L−
∂M

▶ (d) is the identity on LM.

uM also plays the role of a real structure (complex conjugation). The
compatibility condition for a complex structure J∂M is that it has to
anti-commute with uM. Given such a complex structure there is a real
orthogonal decomposition L∂M = LM ⊕ J∂MLM. In terms of this,

uM(ξ + J∂Mη) = ξ − J∂Mη, ∀ξ, η ∈ LM.
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Dynamics and evolution

uM also plays the role of a generalized evolution map.

Suppose we have a traditional notion of evolution in M: ∂M
decomposes into an “initial part” Σin and a “final part” Σout with an
evolution map ũM : LΣin → LΣout . Then ũM is identical to the restriction
of uM.

x
Σin

Σout

tin

tout

ũMM
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Time emerging

More generally, we may consider decompositions L∂M = Lin ⊕ Lout not
necessarily arising geometrically so that uM restricts to a bijection
ũM : Lin → Lout. We can think of these as generalized algebraic
evolutions. In general, there are many such algebraic evolutions in a
given region.

In the fermionic case, there exists a preferred algebraic evolution due
to the Krein space structure. This is given by L∂M = L+

∂M ⊕ L−
∂M. uM

thus gives rise to a bijection ũM : L+
∂M → L−

∂M. What is more, these
evolutions automatically match up correctly under gluing, forming an
algebraic notion of time. This does not require a metric or any other
further geometric structure.

In the example of the Dirac field one may verify that this algebraic
notion of time coincides with the usual geometric notion of time.
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ũM : Lin → Lout. We can think of these as generalized algebraic
evolutions. In general, there are many such algebraic evolutions in a
given region.

In the fermionic case, there exists a preferred algebraic evolution due
to the Krein space structure. This is given by L∂M = L+

∂M ⊕ L−
∂M. uM

thus gives rise to a bijection ũM : L+
∂M → L−

∂M. What is more, these
evolutions automatically match up correctly under gluing, forming an
algebraic notion of time. This does not require a metric or any other
further geometric structure.

In the example of the Dirac field one may verify that this algebraic
notion of time coincides with the usual geometric notion of time.
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Example: The Dirac field

The Dirac field in Minkowski spacetime is a 4-dimensional complex
vector field X. Its free Lagrangian is,

L(X) = −ℑ
(
X†γ0γµ∂µX

)
− mX†γ0X.

Here, γµ are the usual γ-matrices of high energy physics.
The Lagrangian leads to the symplectic structure,

ω̃Σ(X,Y) =
∫
Σ

ℑ
(
X†γ0γµY

)
nµd3x.

This in turn leads to the symmetric bilinear form,

gΣ(X,Y) = 2ω̃Σ(X, iY) = 2

∫
Σ

ℜ
(
X†γ0γµY

)
nµd3x.
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Decomposing the inner product

Rewrite this as
gΣ(X,Y) = 2

∫
Σ

ℜ
(
X†PY

)
d3x,

with P(x) = γ0γµnµ(x) an operator valued function. Since P(x) is
self-adjoint we can decompose it as,

P(x) = P+(x) + P−(x)

where P+(x) has only non-negative and P−(x) only non-positive
eigenvalues. Restricting to eigenspaces of P+(x) or P−(x) at each point
x ∈ Σ leads to subspaces L+

Σ and L−
Σ of the space LΣ of fields on Σ.

Moreover, gΣ is then positive definite on L+
Σ and negative definite on

L−
Σ. If P(x) is non-degenerate (almost) for all x ∈ Σ, then LΣ is a Krein

space,
LΣ = L+

Σ ⊕ L−
Σ.
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Spacelike hypersurfaces
Consider an equal time hypersurface Σ in Minkowski space. Its future
pointing normal vector is,

n(x) = (1, 0, 0, 0). (1)
This yields P(x) = γ0γ0 = 1. Thus, P+(x) = P(x) and L+

Σ = LΣ. That is,
gΣ is purely positive definite and LΣ is a real Hilbert space.

The normal vector to an arbitrary future oriented spacelike
hypersurface Σ can be locally brought into the form (1) by a Lorentz
transformation. Since by continuity arguments the rank of P(x) cannot
change, it must be positive as for (1). That is, P+(x) = P(x) and LΣ is a
real Hilbert space.

Restricting to spacelike hypersurfaces with future orientation yields
only Hilbert spaces. This explains why Krein spaces do not appear in
the standard approach.

The opposite orientation yields negative definite spaces.
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Timelike hypersurfaces

Consider a timelike hyperplane Σ in Minkowski space characterized
by the normal vector,

n(x) = (0, 0, 0, 1). (2)

This yields (using the standard or the chiral representation) the operator

P(x) = −γ0γ3 =
©«
1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

ª®®®¬ .
Thus P+(x) and P−(x) have both rank 2 and eigenvalues 1 and −1
respectively. LΣ decomposes non-trivially with the positive and
negative definite parts consisting of spinors of rank 2 at each point.
Since Lorentz transformations cannot change the rank, an argument
analogous to that of the spacelike case shows that this type of
decomposition applies to any timelike hypersurface.

Robert Oeckl (CCM-UNAM) Free fermions – classical theory 2018-09-26 20 / 24



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Algebraic time versus geometric time

spacelike hypersurfaces
t

x

ũ

ũ

The algebraic arrow of time
coincides with the geometric
one.

timelike hypersurfaces
t

x

ũ

The algebraic arrow of time
does not have a definite
direction in geometric terms.
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Plane waves

Expand solutions of the Dirac equation in Minkowski space in terms of
plane waves:

X(t, x) =
∫

d3k
(2π)32E

∑
s=1,2

(
Xs

a(k)us(k)e−i(Et−kx) + Xs
b(k)v

s(k)ei(Et−kx)
)
.

Here, us and vs with s ∈ {1, 2} are the usual spinors in momentum
space.
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Real inner product on plane waves
Consider an equal-time hypersurface located at time t. We take the
space Lt of solutions near this hypersurface to be the space of global
solutions in terms of plane waves. The positive definite real inner
product on Lt is,

gt(X,Y) = 2

∫
d3k

(2π)32E

∑
s=1,2

ℜ
(
Xs

a(k)Ys
a(k) + Xs

b(k)Y
s
b(k)

)
.

Consider now a constant x3 hypersurface. (Set z := x3.) Again we set Lz
to be the global solution space, excluding thus evanescent waves. The
indefinite real inner product on Lz is,

gz(X,Y) = 2

∫
d3k

(2π)32E
k3
|k3 |

∑
s=1,2

ℜ
(
Xs

a(k)Ys
a(k) + Xs

b(k)Y
s
b(k)

)
.

The subspaces L+
z and L−

z are distinguished by the direction of the
momentum component k3 that is perpendicular to the hypersurface.

Robert Oeckl (CCM-UNAM) Free fermions – classical theory 2018-09-26 23 / 24



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Complex structure

The complex structure encodes the distinction between “positive
energy” and “negative energy” solutions. More generally we can think
of it as distinguishing between propagation in the two opposed normal
directions to the hypersurface. This leads to,

(JtX)s
a(k) = iXs

a(k), (JtX)s
b(k) = iXs

b(k)

(JzX)s
a(k) = i k3

|k3 |
Xs

a(k), (JzX)s
b(k) = i k3

|k3 |
Xs

b(k).

Remarkably the induced symplectic form is the same for both types of
hypersurfaces,

ω(X,Y) =
∫

d3k
(2π)32E

∑
s=1,2

ℑ
(
Xs

a(k)Ys
a(k) + Xs

b(k)Y
s
b(k)

)
.
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