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Surprises in fermionic field theory
Bringing fermionic field theory into the GBF framework leads to a

number of striking and unexpected results that do not hold in the
bosonic case:
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Surprises in fermionic field theory

Bringing fermionic field theory into the GBF framework leads to a
number of striking and unexpected results that do not hold in the
bosonic case:

Hilbert spaces are generalized to Krein spaces.

This arises both from consistency conditions and from standard
examples. It turns out to be compatible with the probability
interpretation in the presence of superselection rules.

A notion of time emerges without necessity for a metric.

This is true both in the classical and in the quantum theory.

The gluing anomaly can be renormalized.

As in the bosonic case a gluing anomaly exists. But here it can be
renormalized so that no integrability condition needs to be imposed.

v

Robert Oeckl (CCM-UNAM) Free fermions — quantum theory 2018-10-03 2/18



Today, we consider the quantum theory.
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Classical fermionic field theory (review)

Spacetime is modeled by a collection of hypersurfaces and regions.

T To these geometric structures

Ly, g5, | associate the classical data,

u e per hypersurface > :

Lout a real Krein space (Ly;, g%),

@ per region M :
a hypermaximal neutral
subspace Ly; C Ly

Ly

In addition,

@ per hypersurface ¥ :
> a complex structure |5 .
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Krein space

Recall that a Krein space V is a complete indefinite inner product
space with an orthogonal decomposition

V=VteV .
VT is positive definite and V™ is negative definite. For v € V define

the signature,
0 ifoeVt
[0] :=

1 ifveV '

All Krein spaces considered are separable. An ON-basis of V is the
union of an ON-basis of V* with an ON-basis of V".
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Quantum theory in the amplitude formalism

Spacetime is modeled by a collection of hypersurfaces and regions.

A

Hs, To these geometric structures
associate the quantum data,

e per hypersurface > :
an f-graded Krein space
Hs,
pM @ per region M :
a linear f-graded
OM amplitude map
PM - W&M — C.

b2 Hom

Y

Compared to the purely bosonic case we have a Z;-grading called
f-grading on all structures. Moreover, instead of Hilbert spaces we
have Krein spaces.
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Core axioms (I)

w%

(2 — Hs,

(H&,g

(R
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(T1b) per hypersurface X

A conjugate linear f-graded involutive

isometry iy : Hs — Hs,.

(T2) per hypersurface decomposition

Y =X1U>H

An isometry 75, y,.5 : Hy, ® Hs, — Hs

such that 752/21;2 ° Ty, 5, is the f-graded
transposition 1 ® 1o > (=1)¥11+V2ly, @ ;.

(T3x) per hypersurface ¥

The amplitude map gives rise to the inner
product (i5(¢), M)y = pg o (P @ 7).
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Core axioms (II)

(T5a) per disjoint composition of regions M = M; LI My
pm(T(1 ® P2)) = par, (Y1) pm, (P2). We write pyt = pu, © i,

(T5b) per self-composition of region M to M; along X

P () - ems = Zi(=1)[Hpam(T(9 ® i ® 12(C))).
Ck lZ(Ck)

{Ck}ker ON-basis of Hs. cp,5; gluing anomaly.
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Fock-Krein space (I)
We distinguish bosonic and fermionic case via

x := 1 inthebosoniccase, « := —1 in the fermionic case.

Given a Krein space L, the Fock-Krein space ¥ (L) over L is the
completion of an Ny-graded Krein space,

F (L) = P Full),
n=0
Fu(L) :={¢ : Lx---xX L — C n-lin. cont. : o0 = xl°ly, Vo € §"}.

There is a natural Z-grading. In the bosonic case it is trivial, i.e.,
|| = 0forall i € F(L). In the fermionic case it is,

0] = 0 ify e Fu(L), neven
Y= if Y € F(L), nodd.
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Fock-Krein space (II)

We write ¢ = }° ¢, for ¢ € F (L) decomposed into 1, € F,(L).
The inner product in Fock-Krein space is,

(o]

W)=y w2t () e g G T Y- )

n=0 kl

This makes ¥ (L) into a Krein space as well.
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Quantization: State spaces

For each hypersurface ¥ we define the corresponding state space Hs.
to be the Fock-Krein space ¥ (Ly;).
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Quantization: State spaces

For each hypersurface ¥ we define the corresponding state space Hs.
to be the Fock-Krein space ¥ (Ly;).

For all n € Ny define s, ,, : 1(Ls) — Fu(Ls) by,
(o (W)(E1, - &) =Y (Ens oo, E1)-
Taking these maps together for all n € Ny defines i : ¥ (Lx) — F (Ls3).

A decomposition ¥ = ¥ U 3y induces a direct sum of Krein spaces
Ly, = Ly, ® Ly,. This induces an isomorphism of Fock-Krein spaces

T,59:8 ¢ 7:(LEl) ® ?—(sz) - T(LE)

This also yields the f-graded transposition,

F (Ly,)®F (Ls,) = F (Ls,)®F (Ly,) 1 ¢1@¢ > (-1)ViIHW2lyyey,.
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Quantization: Amplitudes
Given a region M we recall the real orthogonal decomposition
Lom = Ly @ JomLum giving rise to the map uns : Loyt — Lom,

upm(E+Jomn) = E=Jomn, V&, n € Ly.
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Quantization: Amplitudes
Given a region M we recall the real orthogonal decomposition
Lom = Ly @ JomLum giving rise to the map uns : Loyt — Lom,

uM(‘E +]9Mn) = 5_]8]\/1771 Vé/TIELM

The amplitude is defined as,

> (2n)! L
pm(p) = Z — K" Z (_1)[Ck1}+ +(Cky)
n=0 ki,... kn€l

¢2n(6k1/ cecy Ck,l/ uMCkn/ e /uMCkl)
The amplitude vanishes for states with odd particle number.
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Main result

This quantization scheme yields the data of a quantum theory in
terms of the amplitude formalism.

Theorem

With an additional integrability assumption, the core axioms as well as
the vacuum axioms are satisfied.

Theorem

In the bosonic case this quantization scheme is equivalent to
holomorphic quantization. (See talk this afternoon.)

The quantization scheme may be viewed (in various ways) as a functor
from semiclassical field theories to generalized quantum field theories.

The integrability assumptions amounts to requiring the finiteness of
the gluing anomaly factor. Without it, gluing axiom (T5b) may be
violated.
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Algebraic time

Recall that ups : Lyps — Loy plays the role of a generalized evolution
map in the classical theory and gives rise in the fermionic case to an
algebraic notion of time via its restriction

Up : L;M — Lo
We saw that in the Dirac field theory, this coincides with the geometric
notion of time for the time-interval geometry.
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Algebraic time

Recall that ups : Lyps — Loy plays the role of a generalized evolution
map in the classical theory and gives rise in the fermionic case to an
algebraic notion of time via its restriction

Up : L;M — Lo
We saw that in the Dirac field theory, this coincides with the geometric
notion of time for the time-interval geometry.

In the quantum theory we have a decomposition
Hom = F (L), © Loy = F(L3,) © F (L)
The quantum analog of 1y is Up = Honr — Hop given by

(UMI,D)(EL ey én) = gb(uMén, e uMél).

This induces an f-graded isometric isomorphism, representing the
quantum version of the algebraic time evolution,

~ ) + _
i : F(LS,) — F (L)
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Renormalizing the gluing anomaly (I)

Recall the main gluing identity of the gluing axiom (T5b):

pmy () ¢ = Z(‘UKHPM(#J ® Ck ® tx(Lx))

kel

If all state spaces are finite-dimensional the sum on the right hand
side is finite. The axiom is then satisfied without any additional
integrability condition with finite gluing anomaly factor ¢ (Theorem).
This can only happen in the fermionic case. There, if Ly; is
finite-dimensional so is the Fock space 7 (Ly.).

Consider now the set {Ly; 4 }aca of all finite-dimensional subspaces of
Ls.. This is an injective system with the inclusion. Moreover, it induces
an projective system {F (Ly; ) }aca of the corresponding Fock-Krein
spaces. Define P, as the orthogonal projector ¥ (Ls) — ¥ (Ly,q).
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Renormalizing the gluing anomaly (II)

Consider a “reduced version” of the gluing identity,

o () - ca = D (1) pu(y ® Pali ® 15(Pali)). (1)

kel

This of course will not hold for arbitrary states 1) if we fix a.
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Renormalizing the gluing anomaly (II)
Consider a “reduced version” of the gluing identity,
P (9) - ca = ) (=) pua(1 & Poly ® t:(Paly). (1)
kel

This of course will not hold for arbitrary states 1) if we fix a.

But, (Theorem) there exists a set {c, }nca such that for any state 1) there
is p € A such that for all y > § the identity (1) holds. This implies,

tim ( pas, (9) - ca = D (=) pua( ® Paly ® 15(Pali)) | = 0.
a kel

This is the renormalized gluing identity. It is satisfied in the
fermionic theory without any integrability condition.

Note: The limit h_rr} co does not exist in general!
a
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The positive formalism for fermions

For a hypersurface ¥ we consider the space By, of “self-adjoint”
operators on Hs.. Here o self-adjoint means,

(0&, )y = (_1)[5}+[n]+lél-lnl<5, an)s.

Recall that Hy; is f-graded. We write, Hy, = Hy o ® Hy, 1. This induces
a bigrading on By,. Write By, o for the subspace of operators on Hs; o.
Then self-adjointness for o € By, o is self-adjointness in the Hilbert
space sense. This is also how we define positivity,

o>0 iff (-1)NeE, Exn >0  VEeHs)
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The positive formalism for fermions

For a hypersurface ¥ we consider the space By, of “self-adjoint”
operators on Hs.. Here o self-adjoint means,

(0&, )y = (_1)[5}+[n]+|£|-|nl<gl an)s.

Recall that Hy; is f-graded. We write, Hy, = Hy o ® Hy, 1. This induces
a bigrading on By,. Write By, o for the subspace of operators on Hs; o.
Then self-adjointness for o € By, o is self-adjointness in the Hilbert
space sense. This is also how we define positivity,

o>0 iff (-1)NeE, Exn >0  VEeHs)

For a region M the probability map Ay : By — Ris given by,
Am(0) = 8,00 = ) pm(C)pm(oCr)

kel

pum vanishes on the complement of 1 o.
Apm vanishes on the complement of B, 0o-
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Probabilities

What is the probability II for measuring a boundary condition P on
JdM given a more general boundary condition Q?

J

P, Q € Bym 00 by the fermionic superselection rule [Wick, Wightman,
Wigner 1952] and 0 < P < Q.
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Am(Q) =, Qllm
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Probabilities

What is the probability II for measuring a boundary condition P on
JdM given a more general boundary condition Q? J

P, Q € Bym 00 by the fermionic superselection rule [Wick, Wightman,
Wigner 1952] and 0 < P < Q.

_Am(P)  [@,Plum
HPIO=Z@ ~ 2 Qlu

If P, Q are projection operators this reduces to the old probability rule

[RO 2005]. Given subspaces A C S C H;y, let P be the projector onto (A
and Q the projector onto S. Then,

Ykek |pm(Ci)I?
ke |Pm(Cr)l
Here {Cg}rer reduces on K € ] C I to ON-bases of A € S € Hyp 0.
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