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What is a measurement in quantum gravity?

The standard formulation of quantum theory is based on a
non-relativistic notion of spacetime. Time plays a special role. It fails
to make sense in a general relativistic setting.

To apply the standard formulation we need to restrict the measurement
to occur in classical regions of spacetime, where the metric is frozen.
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Asymptotic measurement: QFT

Consider measurement only at asymptotic infinity, infinitely early and
infinitely late time, described by transition probabilities. This is how
the S-matrix in quantum field theory works to describe scattering
processes. This requires perturbation theory.

time

A

final state <«———— free particles

initial state <«—— free particles

space
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At early and late
times particles
are far apart and
do not interact.
The interesting
physics happens
at intermediate
times.
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Asymptotic measurement: QG ?

Fix an approximate classical metric background at asymptotic

infinity. Observations take place exclusively in this region. This
requires perturbation theory in the metric.
(Perturbative Quantum Gravity, String Theory)

time final state <«————— fixed geometry

Sl Sh—

quantum Straightforward perturbation
gravity

. theory breaks down. Can this
regime
work even in principle?

initial state <«—— fixed geometry
>

space
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A bouncing black hole

To illustrate the limitations of the asymptotic approach we consider a
model for a bouncing black hole.
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A bouncing black hole

To illustrate the limitations of the asymptotic approach we consider a
model for a bouncing black hole.

We then show how the positive formalism allows us to make
predictions in this case.
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Black hole

singularity

event horizon

timeA

Schwarzschild region

collapsing null shell

Minkowski region

radius

Consider a black hole that is
formed from a thin shell
that contracts at the speed
of light. We can imagine
this to consist of photons.

There is one parameter
describing this setting: The
mass m of the shell.
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Black hole and white hole

We suppose that quantum gravity
becomes relevant at high curvature and

q(;’f‘ar:;‘i‘:;n prevents the formation of a singularity.

region
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Black hole and white hole

quantum
gravity
region
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We suppose that quantum gravity
becomes relevant at high curvature and
prevents the formation of a singularity.
Instead a bounce occurs and a white hole
is formed. The mass is ejected into a thin
shell expanding at the speed of light.
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Bouncing black hole

The black hole and white
quantum .
gravity hole spacetimes can be
region sewn together so that there

is a continuous classical
spacetime outside the
quantum gravity region.

bounce
time T

continuous
classica

spacetime  There is one free parameter:
The bounce time 7.

observer
trajectory
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How to predict the bounce time?

This question is outside of the scope of the asymptotic measurement
setup. There is no single fixed asymptotic metric. Rather, the
asymptotic metric is different for each bounce time. On the other hand,
the incoming and outgoing particles always seem to be the same.
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Elements of the positive formalism

Consider measurements,
A observations, interventions etc.
time distributed in spacetime.

AB

space
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Elements of the positive formalism

time

AB

Consider measurements,
observations, interventions etc.
distributed in spacetime.

o We wish to predict correlations

between them. For example:
The probability P for the light
to turn green given that we put

the switch in position “A”:

@)

AB
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Elements of the positive formalism
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For a local description cut up
spacetime into pieces, called
regions. These are in contact
with each other through
hypersurfaces.

Associate processes (probes) to
regions to encode experiments
etc. Compose processes along
with the underlying regions.

Associate states (boundary
conditions) to hypersurfaces to
parametrize interactions.
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Bounce model: bounce time probability

fix m and
measure T
in region X

free dynamics
in region Q
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Bounce model: bounce time probability

Given a fixed shell mass m, we wish
fix m and to determine the probability for the
measure T bounce time 7 to lie in a given interval
in region X (71, T2]. This is,

(]
74|
g ]
P(myg, [T1,T2]) =
[
V|
o]
In formal notation,
free dynamics 2o, bx[mo, [11, T2]]1

in region Q P(mo, [t1, T2]) = [=g, bx[mo, [0, o]
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Bounce model: classical

Suppose we had a classical theory of gravity allowing for the bounce.
For each shell mass 1 it assigns a bounce time 7.(11).
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Bounce model: classical
Suppose we had a classical theory of gravity allowing for the bounce.
For each shell mass 1 it assigns a bounce time 7.(11).

The phase space Ly, = R x R* = {(m, 1)} at ¥ is parametrized by
mass m and bounce time 7. The space By, of boundary conditions or
states consists of statistical distributions on Ly, i.e., positive functions.

The boundary conditions bx[+] take the form,

bx[mo, [0, ]| (m, T) = 6(m —my),

bX[m()r [7.'1, TQH(m/ T) = 6(1’” - mO)X[n,Tz](T)'
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Bounce model: classical
Suppose we had a classical theory of gravity allowing for the bounce.
For each shell mass 1 it assigns a bounce time 7.(11).

The phase space Ly, = R x R* = {(m, 1)} at ¥ is parametrized by
mass m and bounce time 7. The space By, of boundary conditions or
states consists of statistical distributions on Ly, i.e., positive functions.

The boundary conditions bx[+] take the form,

bx[mo, [0, ]| (m, T) = 6(m —my),

bx[mo, [t1, T2]](m, T) = 8(m = o) X[1,,2,)(7)-
The probe B enforces the classical bounce time,
[@g,f1 = /f(m, 7)0(T — 1c(m))dmdt = /f(m, Tc(m)) dm.

As expected, this yields P(mq, [T1, T2]) = X[¢,,1.](Tc(m0))-
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Bounce model: quantum

Instead of the phase space Ly, we have a Hilbert space .. The space

By, of boundary conditions or states is now the space of density
matrices on Hs;, i.e., positive operators.
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Bounce model: quantum

Instead of the phase space Ly, we have a Hilbert space .. The space
By, of boundary conditions or states is now the space of density
matrices on Hs;, i.e., positive operators.

We assume that we have coherent states K, ; € s, that approximately
describe the classical geometries in X corresponding to a given shell
mass m and bounce time 7. These satisfy a completeness relation,

1:/|Km,1>(Km,T|a(m,T)dde.
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Bounce model: quantum

Instead of the phase space Ly, we have a Hilbert space .. The space
Bs; of boundary conditions or states is now the space of density
matrices on Hs;, i.e., positive operators.

We assume that we have coherent states K, ; € s, that approximately
describe the classical geometries in X corresponding to a given shell
mass m and bounce time 7. These satisfy a completeness relation,

1:/|Km,1>(Km,T|a(m,T)dde.

This gives rise to a positive operator valued measure (POVM). This
allows us to quantize a classical statistical distribution f on phase
space into a corresponding mixed state f of the quantum theory,

}: /f(m/ T)|Kn'z,1><Km,T|a(Wl,T) dmdrt

In this way we obtain, bx[my, [0, oo]| and bx[my, |11, T2]] as positive
operators on Hs, representing mixed states.
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Bounce model: quantum

The null probe U in the quantum theory is determined by the
amplitude map pg : Hy; — C from the quantum gravity model
Using the coherent states,

[@g, 0l :/pQ(oKm,T)pQ(Km,T)a(m,T)dde
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Bounce model: quantum
The null probe U in the quantum theory is determined by the

amplitude map pg : Hs; — C from the quantum gravity model.
Using the coherent states,

[@g, 0l :/pQ(oKm,T)pQ(Km,I)a(m,T)dde

If ¢ = farises as the quantization of a classical statistical distribution f,

1801 = [ fim, ©lpo(Kn,o ) alon, ) dmd
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Bounce model: quantum

The null probe U in the quantum theory is determined by the
amplitude map pg : Hs; — C from the quantum gravity model.
Using the coherent states,

[@g, 0l :/pQ(oKm,T)pQ(Km,T)a(m,T)dde

If ¢ = farises as the quantization of a classical statistical distribution f,

[[IZQ/}]] = /f(m/ T)lPQ(Km,T)|2 OZ(WL, T) dmdr.
With this we get,

% b T2| Km();[ |20( Mo, T dr
P<m0/ [Tll TZ]) _ [[lZIQ/bX{mO/ [Tl, TQH]] B /:[ PQ( ) ( B )

1

[2q, bxlmo, (0,01 [ 1pQ(Kuo,)I? a(ig, 7) dT
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