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Context

Field theories – for a large class of systems –
GBFT: covariant, local
(spacetime M differentiable manifold, not necessarily metric)

Effective Field Theory (EFT) at a given scale
{EFTSc}Scales in M −→ EFTM

Construct EFTSc as the limit of a correction procedure

EFTSc = lim
Sc′→M

CorrFTSc (Sc’)

where CorrFT(βSc (Sc’)) = RG(PrimeFT(βSc’))

Key concepts:
Scale, coarse graining, EFTSc , observables, GBFT
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Scale
A history φ is a local section of Y π−→ M .

In a lagrangian formulation, L = L(x, φ,Dφ), we need
Partial Observables that talk about J 1Y 3 (x, φ,Dφ).

Measuring scale ←→ discrete collection of measuring devises
Definition A scale is a faithful structure of local subalgebras:
to every open set U ⊂ M corresponds a subalgebra

PO∆(U ) ∼ C∞(π−1U ,R or C) ⊂ POM

such that {Evalφα : PO∆(Uα)→ R or C}Uα⊂M determines:
(i) the bundle Y π−→ M up to equivalence
(ii) each φα ∈ Γ(Y ) up to “microscopical details” (homotopy
relative to Eval)
–
A notion of kth order agreement of sections leads to J kY∆
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Coarse graining

Definition ∆′ ≥ ∆ means that there is a coarse graining map
cg consisting of an assignment of a a homomorphism cg(U ) to
every open set U ⊂ M

PO∆(U ) cg(U)−→ PO∆′(U )
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Scale: topological motivation and implications
Topological motivation:
In discrete approaches to GR, like Regge calculus, we rely on the
fact that spacetime’s topology can be stored in the discrete
structure of a triangulation.
Similarly, the bundle structure of the space where histories live,
J 1Y , should be storable in a discrete manner.

Topological implications of this definition of scale:
I “∆-microscopical” variations of a ∆-history do not tear
I A classical variational problem in a given bundle at scale ∆

makes sense
I Coarse graining from scale ∆′ ≥ ∆ by summing over

∆-indistinguishable histories is a sum over histories in a well
defined bundle
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Ex.1) 1st order scalar field theory with F = Rk

Scale defined with the aide of a triangulation, M → (M ,∆)
x j1φ7−→ j1φ(x) = (x, φ,Dφ) decimated to
ν

φ̃7−→ φ̃(ν) = (x(Cν), φν ∈ F , {x(Cτ), φτ ∈ F}τ⊂∂ν) or
ν

φ̃7−→ φ̃(ν) = (ν, φν ∈ F , {φτ ∈ F}τ⊂∂ν)
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Ex.2) Sigma models; scalar fields on a G-principal bundle

A family of local sections to local trivializations

{φα : Uα → Uα ×G}Uα⊂M

determines the transition functions gαβ(x) = (gα(x))−1gβ(x)

Decimated local sections give partial information about the
transition functions

ν
φ̃7−→ (x(Cν), gν ∈ G; {x(Cτn−1), gτn−1 ∈ G}τn−1⊂(∂ν)n−1 ;

...; {x(Cτ0), gτ0 ∈ G}τ0⊂(∂ν)0 ;
W = { h. type of (φ−1

ν φτ )|τ}τ⊂∂ν)

determines the bundle up to equivalence
and the history up to homotopy
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Ex.3) gauge fields on a G-principal bundle
A connection on a G-bundle determines a holonomy homom.

HA : L?,b → G

A homom. H satisfying certain smoothness conditions determines
(i) a principal bundle (up to equivalence) and
(ii) a connection up to gauge [Barrett 1991]

A decimated parallel transport (semigroup) homom.

ν
Ã7−→
(x(Cν), {hl ∈ G}l⊂ν ; {x(Cτn−1), {krn−1 ∈ G}r⊂τn−1}τn−1⊂(∂ν)n−1 ;

...; {x(Cτ0)}τ0⊂(∂ν)0 ; W = { h. type of gluing ν and τ loc. triv. }τ⊂∂ν)

determines a principal bundle (up to equivalence)
and a connection up to homotopy and gauge [“Local gauge theory
and coarse graining”, Z. 2011]
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Geometric framework for classical field theories at scale ∆

Prologue
I The first order effective field bundle, J 1Y∆,

is a finite dimensional manifold
(with the str. of a fiber bundle over a simplicial complex)

I Local objects are defined on J 1Y∆

I Histories are local sections, among them we have
“solutions”

I Geometric structure emerges as relations among local
objects that hold when evaluated on “solutions”
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Simplicial first order effective field bundle

Decimated local record of a history in 1st order format

ν
φ̃7−→ φ̃(ν) = (ν, φν ∈ F , {φτ ∈ F}τ⊂∂ν)

A variation δφ̃(ν) = ṽ(ν) = (vν ∈ TφνF , {vτ ∈ TφτF}τ⊂∂ν)

Notation: (M ,∆), ν ∈ U n
∆, τ ∈ (∂U )n−1

∆ , or τ ∈ U n−1
∆ ,

φ̃(ν) ∈ J 1Y∆, φ̃ ∈ HistsU , ṽ ∈ Tφ̃HistsU , or ṽ ∈ X(J 1Y∆|U )
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Variational principle, field eqs. and geometric structure

S(φ̃) =
∑
ν∈Un

∆

L(φ̃(ν))

⇒
dS(φ̃)[ṽ] =

∑
U−∂U

φ̃∗ iṽEL +
∑
∂U

φ̃∗ iṽΘL

where

ΘL(·, φ̃(τν)) = ∂L
∂φτ

(φ̃(ν))dφτ [1 form, n-1 cochain] on J 1Y∆,

EL(·, φ̃(ν)) = ∂L
∂φ

(φ̃(ν))dφν +
∑

τ∈(∂ν)n−1

∂L
∂φτ

(φ̃(ν))dφτ

Hamilton’s principle: (i) field equations, (ii) geometric str.
Field eqs: (i.a) internal to each ν,
(i.b) gluing (momentum matching) at each τ = ν ∩ ν ′

† Sigma models and gauge theory also available
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The (pre)multisymplectic form

ΩL(ṽ(ν), w̃(ν), φ̃(τν)) .= −d(ΘL|φ̃(τν))(ṽ(ν), w̃(ν))

assigns (pre)symplectic structures to spaces of data over
codimension 1 domains Σ 7→ ΩΣ

ΩΣ,φ̃(ṽ, w̃) =
∑
Σ
φ̃∗ iw̃iṽΩL

E.g. scalar field Σ spacelike ΩΣ,φ̃(ṽ, w̃) = 2k
h

∑
Σ dφν ∧ dφτ (ṽ, w̃)

Given any φ̃ ∈ SolsU , ṽ, w̃ ∈ Tφ̃SolsU and U ′ ⊂ U
the multisymplectic formula holds:∑

∂U ′
φ̃∗ iw̃iṽΩL = 0

Proof.
0 = −ddS = −d(

∑
∂U φ̃∗ ΘL) =

∑
∂U φ̃∗ ΩL
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The space of first variations

Consider φ̃ ∈ SolsU .
First variations of φ̃ are elements of Tφ̃SolsU ⊂ Tφ̃HistsU , and
may be induced by vector fields on J 1Y∆.

I They are characterized by satisfying LṽEL = 0
(Recall dS(φ̃) =

∑
U−∂U φ̃∗ EL +

∑
∂U φ̃∗ ΘL)

I They define a lagrangian2 subspace of Ω∂U ′,φ̃ for all U ′ ⊂ U

2
qua qua qua, la la la, blu blu blu qua qua qua, la la la, blu blu blu
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Observable currents
F ∈ OCU iff it is an n-1 cochain on J 1Y∆ ·st· ∀ φ̃ ∈ SolsU

F(φ̃(τν)) .= F(τ, φτ , φν) = −F(φ̃(τν′)) = F(−τ, φτ , φν′),∑
∂U ′

φ̃∗ F = 0 ∀ U ′ ⊂ U

Observables
QF ,Σ(φ̃) .=

∑
Σ
φ̃∗ F

Notice that if Σ′ is homologous to Σ and φ̃ ∈ SolsU

QF ,Σ′(φ̃)−QF ,Σ(φ̃) = QF ,Σ′−Σ(φ̃) = QF ,∂U ′(φ̃) = 0

Notice that OCU is a vector space.

† Sigma models and gauge theory also available 15 / 24



Can observable currents distinguish neighboring solutions?
Consider a curve of solutions γ(s) ∈ SolsU with

γ(0) = φ̃ ∈ SolsU , γ̇(0) = w̃ ∈ Tφ̃SolsU .

** Is OCU large enough to resolve Tφ̃SolsU ? **
QF ,Σ separates φ̃ from nearby solutions in γ if

d
ds |s=0QF ,Σ(γ(s)) =

∑
Σ
φ̃∗ dF [w̃] 6= 0

If the observable current has an associated hamiltonian vector field

dF = −iṽΩL

(let us call such an OC a hamiltonian OC, F ∈ HOCU )
the separability condition reads∑

Σ
φ̃∗ iw̃iṽΩL 6= 0.
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Observable currents distinguish neighboring solutions
Separability measuring in the bulk
Assume ΩL is non degenerate. Then for any φ̃ ∈ SolsU there
is a hamiltonian OC F that can be used to separate φ̃ from
any neighboring solution.
Sketch of proof.
Given any non constant curve γ(s) ∈ SolsU as above,
ΩL non deg. ⇒ ∃ ṽ and τ ⊂ U ·st·
ΩL(ṽ, w̃ = γ̇(0), φ̃(τ)) 6= 0. Construct F from ṽ.

Separability measuring in the boundary
Assume ΩL satisfies a non deg. condition. Then for any
φ̃ ∈ SolsU there is F ∈ HOCU that separates φ̃ from any
neighboring solution measuring at Σ ⊂ ∂U .
Sketch of proof.
ΩL non deg.’ ⇒ ∃ ṽ and Σ′ ⊂ U with ∂Σ′ ⊂ ∂U ·st·
d
ds |s=0QF ,Σ′(γ(s)) = −∑′

Σ φ̃
∗ iw̃iṽΩL 6= 0.

F may be measured at Σ ⊂ ∂U ·st· Σ′ − Σ = ∂U ′. 17 / 24



Locally hamiltonian vector fields
We will investigate the space of hamiltonian observable currents.
Hamiltonian (or exact) vector fields

If − iṽΩL = dF

ṽ is said to be a hamiltonian vector field for F .
ṽ ∈ Ha(J 1Y∆|U ) ⊂ X(J 1Y∆|U ) and F ∈ HOCU ⊂ OCU .

Locally hamiltonian (or closed) vector fields
If −iṽΩL

.= σṽ with

dσṽ = 0 and
∑
∂U ′

φ̃∗ iw̃σṽ = 0

for all U ′ ⊂ U and (w̃, φ̃) ∈ TSolsU ,
ṽ is said to be a locally hamiltonian vector field.
ṽ ∈ LHa(J 1Y∆|U ) ⊂ X(J 1Y∆|U ).
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Conditions for a vector field to be locally hamiltonian

dσṽ = 0 ⇐⇒ LṽΩL = 0∑
∂U ′

φ̃∗ iw̃σṽ = 0 ∀U ′, w̃ ⇐= LṽEL = 0∑
∂U ′

φ̃∗ iw̃σṽ = 0 ∀U ′, w̃ =⇒† LṽEL = 0

All evaluated at a φ̃ ∈ SolsU .

Notice that if LṽΩL = 0 holds at Σ,
the multisymplectic formula implies that it also holds at any
Σ′ = Σ + ∂U ′ if LṽEL = 0 holds inside U ′.

=⇒ The bulk condition is LṽEL = 0 (i.e. ṽ ∈ Tφ̃SolsU )

† If Tφ̃SolsU defines a lagrangian subspace of Ω∂U ′,φ̃ for all U ′ ⊂ U
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Observable currents and locally hamiltonian vector fields

I Some closed 1-forms may be integrated, revealing that they
are exact. This is the subject of the next slide.

LHa(J 1Y∆|U ) ⊃ Ha(J 1Y∆|U )

I If ΩL(·, ·; φ̃(τν)) is non degenerate ∀τν ∈ U

0 −→ OCU
Ω−1

L−→ Ha(J 1Y∆|U )

This contrasts with Multisymplectic Field Theory in the continuum,
where the n+1 form ΩL is not invertible.
The situation is closer to initial data formulations of field theory
where the symplectic form is invertible.
The difference arises from the fact that in the discrete setting there
is a predetermined set of codimension 1 faces on which ΩL may be
evaluated to induce a (collection of) 2 forms.
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Observable currents from LHVFs
ṽ ∈ LHa(J 1Y∆|U ) induces σṽ ,
integration on the fibers may lead to Fṽ,K ∈ OCU .
Integration requires the choice of
a system of integration constants K ;
an allowed choice of integration constants implies∑

∂U ′
φ̃∗ Fṽ,K = 0 ∀ φ̃ ∈ SolsU , U ′ ⊂ U

Adding a closed n-1 cochain C in U to a system of allowed
integration constants K yields a new system of allowed integration
constants K ′ = K + C .
Fṽ,K ∈ OCU and its physical meaning are determined by ṽ and K .

OCU is in correspondence with TSolsU ;
when ΩL is non deg. the corresp. is roughly 1 to 1
making OCs capable of separating neighboring solutions.
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Poisson brackets among observable currents

Given two observable currents Fṽ,K ,Gw̃,L ∈ OCU
their Poisson bracket is another observable current

{Fṽ,K ,Gw̃,L}(φ̃(τν)) = ΩL(w̃, ṽ, φ̃(τν))

whose hamiltonian vector field is [ṽ, w̃].

Recall ΩL = −dΘL and dS |Sols =
∑
∂U ΘL

Then {F , ·} is related to the variation of a solution φ̃ induced by
SU (φ̃)→ SU ,λ(φ̃) = S(φ̃) + λ

∑
∂U F φ̃.

Similar considerations for bulk obs. lead to Peierls’ bracket.
Peierls’ bracket defines an equivalence relation among bulk obs.
Using our bracket, the equivalence relation extends to bdary obs.
In fact, bdary obs. may be used to label equiv. classes of bulk obs.
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Summary and remarks
I The concepts of:

scale,
coarse graining,
field theory (at a given scale) and
observable currents (at a given scale)
were studied in the GBFT spirit for classical theories

A path integral quantization takes these concepts to quantum
GBFT – spin foam models –. There are some caveats:

I For theories with gauge symmetries ΩL is degenerate
derived structures like measures, inner products, etc do have a
kernel
(if an appropriate quotient is taken nondegeneracy is restored)

I Observable currents in general lead to

Q̂F ,Σ = Q̂F ,Σ′ + R̂F ,B for Σ− Σ′ = ∂B

(the classical property holds only when eval. on solutions)
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Thank you for your attention!
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