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Context

Who should be interested in the talk?

People interested on

I spin foam models for field theory
I the notion of “boundary observables”
I the notion of observables

in any local covariant field theory
I theoretical physics
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Review of the geometric framework

Prologue
I The first order effective field bundle, J 1Y∆,

is a finite dimensional manifold
(with the str. of a fiber bundle over a simplicial complex)

I Local objects are defined on J 1Y∆

I Histories are local sections, among them we have
“solutions”

I Geometric structure emerges as relations among local
objects that hold when evaluated on “solutions”
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Simplicial first order effective field bundle

Decimated local record of a history in 1st order format

ν
φ̃7−→ φ̃(ν) = (ν, φν ∈ F , {φτ ∈ F}τ⊂∂ν)

A variation δφ̃(ν) = ṽ(ν) = (vν ∈ TφνF , {vτ ∈ TφτF}τ⊂∂ν)

Notation: (M ,∆), ν ∈ U n
∆, τ ∈ (∂U )n−1

∆ , or τ ∈ U n−1
∆ ,

φ̃(ν) ∈ J 1Y∆, φ̃ ∈ HistsU , ṽ ∈ Tφ̃HistsU , or ṽ ∈ X(J 1Y∆|U )
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Variational principle, field eqs. and geometric structure

S(φ̃) =
∑
ν∈Un

∆

L(φ̃(ν))

⇒
dS(φ̃)[ṽ] =

∑
U−∂U

φ̃∗ iṽEL +
∑
∂U

φ̃∗ iṽΘL

where

ΘL(·, φ̃(τν)) = ∂L
∂φτ

(φ̃(ν))dφτ [1 form, n-1 cochain] on J 1Y∆,

EL(·, φ̃(ν)) = ∂L
∂φ

(φ̃(ν))dφν +
∑

τ∈(∂ν)n−1

∂L
∂φτ

(φ̃(ν))dφτ

Hamilton’s principle: (i) field equations, (ii) geometric str.
Field eqs: (i.a) internal to each ν,
(i.b) gluing (momentum matching) at each τ = ν ∩ ν ′

6 / 27



The (pre)multisymplectic form

ΩL(ṽ(ν), w̃(ν), φ̃(τν)) .= −d(ΘL|φ̃(τν))(ṽ(ν), w̃(ν))

assigns (pre)symplectic structures to spaces of data over
codimension 1 domains Σ 7→ ΩΣ

ΩΣ,φ̃(ṽ, w̃) =
∑
Σ
φ̃∗ iw̃iṽΩL

E.g. scalar field Σ spacelike ΩΣ,φ̃(ṽ, w̃) = 2k
h

∑
Σ dφν ∧ dφτ (ṽ, w̃)

Given any φ̃ ∈ SolsU , ṽ, w̃ ∈ Tφ̃SolsU and U ′ ⊂ U
the multisymplectic formula holds:∑

∂U ′
φ̃∗ iw̃iṽΩL = 0

Proof.
0 = −ddS = −d(

∑
∂U φ̃∗ ΘL) =

∑
∂U φ̃∗ ΩL
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The space of first variations

Consider φ̃ ∈ SolsU .
First variations of φ̃ are elements of Tφ̃SolsU ⊂ Tφ̃HistsU , and
may be induced by vector fields on J 1Y∆.

I They are characterized by satisfying LṽEL = 0
(Recall dS(φ̃) =

∑
U−∂U φ̃∗ EL +

∑
∂U φ̃∗ ΘL)

I They define a lagrangian2 subspace of Ω∂U ′,φ̃ for all U ′ ⊂ U

2
qua qua qua, la la la, blu blu blu qua qua qua, la la la, blu blu blu
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Observable currents
F ∈ OCU iff it is an n-1 cochain on J 1Y∆ ·st· ∀ φ̃ ∈ SolsU

F(φ̃(τν)) .= F(τ, φτ , φν) = −F(φ̃(τν′)) = F(−τ, φτ , φν′),∑
∂U ′

φ̃∗ F = 0 ∀ U ′ ⊂ U

Observables
QF ,Σ(φ̃) .=

∑
Σ
φ̃∗ F

Notice that if Σ′ is homologous to Σ and φ̃ ∈ SolsU

QF ,Σ′(φ̃)−QF ,Σ(φ̃) = QF ,Σ′−Σ(φ̃) = QF ,∂U ′(φ̃) = 0

Notice that OCU is a vector space.
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Family of examples: Noether currents ∗100th anniversary∗
The Lie group G acts on J 1Y∆ and on histories in 1st order format

(g̃φ)(ν) = (ν, gν(φν), {gτ (φτ )}τ⊂∂ν)

If L(gφ̃(ν)) = L(φ̃(ν)) ∀ ν, φ, g =⇒ S and SolsU are G inv.

Thus, ξ ∈ g induces a first variation ṽξ of any solution φ̃.
We associate to it a Noether current

Nξ = −iṽξ
ΘL

• Thm. (Noether)
Nξ ∈ OCU , dNξ = −iṽξ

ΩL , {Nξ,Nξ} = N[ξ,η]

Proof. Let φ̃ ∈ SolsU and U ′ ⊂ U , then

0 = dS |U ′(φ̃)[ṽξ] = −
∑
∂U ′

φ̃∗ Nξ , ...
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Can observable currents distinguish different solutions?

I OCU has interesting elements for systems with symmetries
I Are there elements in OCU that are not Noether currents?
I Do we get “enough” observables?

I The functional form of obs. generated from OCs is limited *
I Can observable currents distinguish different solutions?

Given φ̃ 6= φ̃′ ∈ SolsU ,
look for F ∈ OCU and a codim 1 surface Σ ⊂ U such that

QF,Σ(φ̃) 6= QF,Σ(φ̃′)

I Can they distinguish solutions using Σ ⊂ ∂U only?
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Can observable currents distinguish neighboring solutions?
Consider curves of solutions γ(s) ∈ SolsU with

γ(0) = φ̃ ∈ SolsU , γ̇(0) = w̃ ∈ Tφ̃SolsU .

** Is OCU large enough to resolve Tφ̃SolsU ? **
QF ,Σ separates φ̃ from nearby solutions in γ if

d
ds |s=0QF ,Σ(γ(s)) =

∑
Σ
φ̃∗ dF [w̃] 6= 0

If the observable current has an associated hamiltonian vector field

dF = −iṽΩL

(let us call such an OC a hamiltonian OC, F ∈ HOCU )
the separability condition reads∑

Σ
φ̃∗ iw̃iṽΩL 6= 0.
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Observable currents distinguish neighboring solutions
Separability measuring in the bulk
Assume ΩL is non degenerate. Then for any φ̃ ∈ SolsU there
is a hamiltonian OC F that can be used to separate φ̃ from
any neighboring solution.
Sketch of proof.
Given any non constant curve γ(s) ∈ SolsU as above,
ΩL non deg. ⇒ ∃ ṽ and τ ⊂ U ·st· ΩL(ṽ, w̃, φ̃(τ)) 6= 0.

Separability measuring in the boundary
Assume ΩL satisfies a non deg. condition. Then for any
φ̃ ∈ SolsU there is F ∈ HOCU that separates φ̃ from any
neighboring solution measuring at Σ ⊂ ∂U .
Sketch of proof.
ΩL non deg.’ ⇒ ∃ ṽ and Σ′ ⊂ U with ∂Σ′ ⊂ ∂U ·st·
d
ds |s=0QF ,Σ′(γ(s)) = −∑′

Σ φ̃
∗ iw̃iṽΩL 6= 0.

F may be measured at Σ ⊂ ∂U ·st· Σ′ − Σ = ∂U ′.
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Locally hamiltonian vector fields
We will investigate the space of hamiltonian observable currents.
Hamiltonian (or exact) vector fields

If − iṽΩL = dF

ṽ is said to be a hamiltonian vector field for F .
ṽ ∈ Ha(J 1Y∆|U ) ⊂ X(J 1Y∆|U ) and F ∈ HOCU ⊂ OCU .

Locally hamiltonian (or closed) vector fields
If −iṽΩL

.= σṽ with

dσṽ = 0 and
∑
∂U ′

φ̃∗ iw̃σṽ = 0

for all U ′ ⊂ U and (w̃, φ̃) ∈ TSolsU ,
ṽ is said to be a locally hamiltonian vector field.
ṽ ∈ LHa(J 1Y∆|U ) ⊂ X(J 1Y∆|U ).
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Conditions for a vector field to be locally hamiltonian

dσṽ = 0 ⇐⇒ LṽΩL = 0∑
∂U ′

φ̃∗ iw̃σṽ = 0 ∀U ′, w̃ ⇐= LṽEL = 0∑
∂U ′

φ̃∗ iw̃σṽ = 0 ∀U ′, w̃ =⇒† LṽEL = 0

All evaluated at a φ̃ ∈ SolsU .

Notice that if LṽΩL = 0 holds at Σ,
the multisymplectic formula implies that it also holds at any
Σ′ = Σ + ∂U ′ if LṽEL = 0 holds inside U ′.

=⇒ The bulk condition is LṽEL = 0 (i.e. ṽ ∈ Tφ̃SolsU )

† If Tφ̃SolsU defines a lagrangian subspace of Ω∂U ′,φ̃ for all U ′ ⊂ U
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Observable currents and locally hamiltonian vector fields

I Some closed 1-forms may be integrated, revealing that they
are exact. This is the subject of the next slide.

LHa(J 1Y∆|U ) ⊃ Ha(J 1Y∆|U )

I If ΩL(·, ·; φ̃(τν)) is non degenerate ∀τν ∈ U

0 −→ OCU
Ω−1

L−→ Ha(J 1Y∆|U )

This contrasts with Multisymplectic Field Theory in the continuum,
where the n+1 form ΩL is not invertible.
The situation is closer to initial data formulations of field theory
where the symplectic form is invertible.
The difference arises from the fact that in the discrete setting there
is a predetermined set of codimension 1 faces on which ΩL may be
evaluated to induce a (collection of) 2 forms.
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Observable currents from LHVFs
ṽ ∈ LHa(J 1Y∆|U ) induces σṽ ,
integration on the fibers may lead to Fṽ,K ∈ OCU .
Integration requires the choice of
a system of integration constants K ;
an allowed choice of integration constants implies∑

∂U ′
φ̃∗ Fṽ,K = 0 ∀ φ̃ ∈ SolsU , U ′ ⊂ U

Adding a closed n-1 cochain C in U to a system of allowed
integration constants K yields a new system of allowed integration
constants K ′ = K + C .
Fṽ,K ∈ OCU and its physical meaning are determined by ṽ and K .

OCU is in correspondence with TSolsU ;
when ΩL is non deg. the corresp. is roughly 1 to 1
making OCs capable of separating neighboring solutions.
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Tailored locally hamiltonian fields

I On a simplicial lattice data over corners is free complete data
ṽφ̃ ∈ J 1Y∆|corner.
(each n dim atom has n+1 corners storing 1st order data)

I The data may be extended to ṽ ∈ LHa(J 1Y∆|corner).
**Kinematical**. Here there is a lot of freedom;
we choose a “simple extension” to each vector.

I The field equations and the linearized field eqs. may be solved
to find φ̃ ∈ Solsν , ṽ ∈ Tφ̃Solsν which extend
ṽ ∈ LHa(J 1Y∆|corner) (for each ṽφ̃ ∈ J 1Y∆|corner).

I The generated vector field in J 1Y∆|ν is also locally
hamiltonian in the rest of the faces of ν. **Dynamical**

I The multisymplectic formula implies dσṽ(·, φ̃(τν))|Tφ̃Solsν = 0
I Since evaluation of 1st variations span Tφ̃(ν)|τ J 1Y∆|τν

dσṽ(·, φ̃(τν)) = 0
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Example: Scalar field

I The phase space at each τν is R2 with the canonical
symplectic structure

I The steps of the algorithm sketched above are very simple
I The linearized field equations are simple linear algebraic

formulas correlating the phase spaces at the boundary of
atoms

I There are enough OCs in the sense that they can
distinguish solutions to the boundary value problem using
only OCs evaluated at the boundary because
“They can measure the value of the field or the field’s
momentum at any τ ⊂ U ”

I For comments on the functional form of the
corresponding observables wait ...
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So, are there enough observable currents in general?

I am not sure.

It seems that for a degenerate ΩL
only classes of solutions will be separable,
which is what intend in those cases.

I have started to study other cases only recently.
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Poisson brackets among observable currents

Given two observable currents Fṽ,K ,Gw̃,L ∈ OCU
their Poisson bracket is another observable current

{Fṽ,K ,Gw̃,L}(φ̃(τν)) = ΩL(w̃, ṽ, φ̃(τν))

whose hamiltonan vector field is [ṽ, w̃].
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On the Peierls bracket of observables

Peierls’ bracket arises from the following formula

dFṽf ,Σ[w̃] =
∫

Σ
φ̃∗σṽf [w̃] = −

∫
Σ
φ̃∗ΩL(ṽf , w̃) =

∫
R4

f [w̃]

where f is a source and the causal Green function is the
responsible for ṽ = ṽ(f ) = ṽf .

The corresponding formula for Fṽf ,Σ(ψ) is

Fṽf ,Σ(ψ) =
∫

R4
f [ψ]
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Boundary smeared field formulas for observable currents
For smearing in codimension 1 we consider a source for the
gluing equations. We return to the boundary value problem at
∂U asking for solutions with a given momentum flux density

f [w̃] = φ̃∗f iw̃ΘL ∀w̃ with φ̃f as unknown

Let us assume that the linearized problem has been solved and
to each f we have a corresponding ṽ = ṽ(f ) = ṽf . Then

σṽf (w̃, φ̃(τν)) = −ΩL(ṽf , w̃, φ̃(τν))
= ṽf [ΘL(w̃, φ̃(τν))]− w̃[ΘL(ṽf , φ̃(τν))]− ...
= f [w̃](τ)− w̃[ΘL(ṽf , φ̃(τν))]−ΘL([ṽf , w̃], φ̃(τν))

which can be interpreted as a local smearing formula for σṽf

with corrections (that applies when acting on chains τ ⊂ ∂U ).
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Coarse graining

The geometric framework includes coarse graining and
correction of models at coarser scales from models at finer
scales.

Observable currents at coarser scale should induce observable
currents at finer scales.
In the boundary smearing field formula the correction terms
need to be adjusted using the finer multisymplectic structure.
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Gluing

Gluing is interesting and simple for observable currents.

In the construction in terms of
ṽ ∈ LHa(J 1Y∆|U ) ⊂ X(J 1Y∆|U ) we

I glue vector fields using the linearized gluing field equations
I glue integration constants for compatibility at boundaries

with shared dof
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Conclusions and outlook

I Observable currents are interesting
I In the discrete formalism described here they are simpler

than in the continuum

I The study of OCs for fields of other types is within reach
I The study of differential forms of other degrees in the

continuum has lead to interesting results (Kanatchikov).
Wilson loops and fluxes are clear candidates to study in
discrete gauge theories.

I In the continuum there is a product among currents of
different degrees (Kanatchikov).
We are considering modifications of this product.
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Thank you for your attention!
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