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EXERCISES 2.2

I Consider the system of linear algebraic equations

2 Let . .. ...

Xy — 2%, + 3x5 =7
2%, + x4+ 5%x5 = —6
Xy — X3+ x4=0

Identify the coefficient matrix and the augmented matrix of the system.

1 0 -3 2 -2 6 1 5§
A=|0 -1 7 5 B=| 2 0 -3 4
23 -4 0 1 -5 0 71

Compute A + B, A — B, 34, —2B, 54 — 1B.

3 Let
1 2
cC=|[-1 0
3 -2
0o 5

4

5

LN

Compute AC and BC, where A and B are defined in Exercise 2.

Let
101 0 2 3
A={-1 2 0 B=|1 -2 4
0 3 5 5 0 -7

Compute AB and BA. Is AB = BA?

Let A be an m x n matrix, and let 0 be an m x n zero matrix. Show that
A+0=0+4=Adandthat4 + (—1)4 = 0.

Let A be an m x_n matrix, and let 0 be an z X p zero matrix. Find A4O.

Let A be an mth order square matrix and I the mth order identity. Show that

Al= 14 = 4.
11
()

Let
Find a 2 x 2 matrix B such that 4B = I. Compute B4. Can the same thing be
done if
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Compute E; 4, E»A, E;A where
a;; G312 3. %4
A= \a;; G @23 doa
d31 @32 @33 dsg,

P Generalize. Hint: E; is obtained from I by multiplying the second row by k,

‘ E, is obtained from I by interchanging rows 1 and 3, and Ej is obtained from I

’ by adding the second row to the first row.

\ 10 Powers of square matrices are defined as follows: AL = A, A% = AA, A° = A4,
etc. - Prove that. 42— I.= (A.= D + ) = (4 + I)4 — I) and A - TI=
U-—DA+A+D =+ 4+DA-D. -

11 Let '
it Y1 = @yiXy + 1%z T A13X3

T V2 = @1%; F G22X%y t G23%3
| Xy = bz + b2z
| =b + b,
Xz = 02121 2272
X3 = b3jzy + basZe
|
| Find ¢y4, €12, €21, and €25, Where

" \1
‘M‘ ¥1 = C1iZy + C12Z2
V2 = C21Z1 + C22%2

: ‘1 and verify the following matrix notation: ¥ = AX, X = BZ, Y = CZ where
e C = AB.

LAl
i 2.3 ELIMINATION METHOD

I In this section, we shall take up an elimination method which is general enough
o 4o find all solutions of a system of linear algebraic equations (if it has any)
=h and which will, in fact, tell us whether a given system has solutions. The idea
i is quite simple. We try to eliminate the first variable from all but the first
1 ‘ equation, the second variable from all but the first and second equations, the
:3“ third variable from all but the first, second, and third equations; etc. This
‘ will not always be possible, but in the attempt we shall find out what is possible,
and it will turn out that this is good enough to achieve our purpose.
et us return to the example of Sec. 2.2:

|
i : ‘ X+ 26— 3w, =0
i . —2x; — x3= -3
i X+ X =0
L ) —2x, + 4x3 =2
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(—1,1,0,3,1) satisfy the homogeneous equations. In fact, the part of the general
solution of the nonhomogeneous equations

_

O O =N
-
Qo

_ ) O

is the general solution -of the homogeneous-equations. This is the situation,
in general, as indicated by the next theorem. This theorem shows that finding
the general solution of the homogeneous system goes a long way toward solving
the nonhomogeneous system. ) T

Theorem 2.3.6 The general solution of the nonhomogeneous systern of
equations, 4X = B, can be obtained by adding the general solution of the
homogeneous system 4X = 0 to any particular solution of the non-
homogeneous system.

PROOF Suppose Z is a particular solution of the nonhomogeneous
system; then AZ = B. Suppose X is any other particular solution. Then
AX = B, and

AX —Z)=AX —AZ=B—- B =0

Therefore, ¥ = X = Z is a solution of the homogeneous equations and
so can be obtained from the general solution of the homogeneous equa-
tions by the appropriate choice of certain parameters. Hence, X = Z + Y,
and since X was any particular solution, we can obtain the general solution
of the nonhcmogerieous system by adding the general solution of the
homogeneous system to a particular solution of the nonhomogeneous
system.

EXERCISES 2.3

1 Which of the following matrices are in reduced form?

123 4

@ ((1) (1)) ® (‘1) (1)) ©@fo 0.1 0

0000

10101 0123 4 123
01010 00123 01 2
Dloo101] @loooo1] DPooo
0101 0 00000 000
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2 TUsing the three basic Tow operations -only, change the following matrices to
reduced form:

1 2 3 4 5
@| -2 0 1 2 3
0 1 5 =2 4
1 2 3 1 2 3 4
30 4 5 6 7 8
@l 115 @y 9 10 11 12
-2 0 7 13 14 15 16
3 The ﬁq}}gwingﬁma’t;ix is in reduced form: o
1 2 3 4 5
0 1 -1 0 2
0 0 0 1 1
0 0 0 0 1
Show that by using the basic row operations only, the matrix can be changed
to the form
1 0a 00
01500
00010
00 0 01
Find q and b.

4 (@) If Bcanbe obtained from 4 by multiplying a row of Aby k # 0, can A be
obtained from B by a basic row operation? .
(») If Bcanbe obtained from A by interchanging two rows, can A be obtained
from B by a basic row operation? o
(c) If Bcanbe obtained from A4 by adding one row to another, can A be obtaine
from B by basic row operations?

5 Let A — B stand for the property “B can be obtained from A by basic row
operations.” Prove that this is an equivalence relation. In other words, prove
that:

(@ A-— A

(b) If A— B, then B— A.

© IfA4— Band B— C,then 4 —» C. .
6 Find all possible solutions of the following systems of equations:

@ = x;— 2xp + 3x3— x, =0 B x t+x— x3=1

—x; +2x3 + X4 = 22y + Xy + 3% =2
2xy + X3 ~ 22Xy = Xy = 5% =1
© x4 + 2x3 — X4 =

— WO OO0

2% + Xp — X3
—x, + 2%, + X3 + 2%
3x2 e ZX3 + SX4

Il

n

2

R
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@ x1 =20+ x3— x4+ x5=1

2x, — x3 + 3x, =2

3x; + Xp + 2x3 — 2x5 = —1
4x; + X3+ 2x3 + 2x4 — x5=2

(€ x;y —2x, + X3 — X4+ 2x5=~T7
Xy + X3 +2x4 — x5=195

Xy = Xy + 2x3 + 2x4 + 2%; = —1

7 For parts (d) and (e) of Exercise 6 find the general solutions of the corresponding
homogeneous equations, and then find the general solution of the nonhomo-
geneous equations by adding the general solution of the homogeneous systern
to a particular solution of the nonhomogeneous system.

8 Let

o O =
O = N
SN W

4
3
1

N Aw

0000O00O

be the reduced coefficient matrix of a system of homogeneous equations. Find

the general solution of the system. How many arbitrary parameters are there in
the solution?

9 Let AX = 0 stand for a homogeneous system of linear algebraic equations.

Show that if X, and X, are solutions, then aX; + bX, is a solution for any .

scalars a and b.
10 Referring to Exercise 3, suppose a reduced system is

Xy + 2x, 4+ 3x3 + dxy + Sx5 =1
Xy — X3 + 2x5 =0
X4+ X5=2

x5 = —1

Solve the system )by changing (by row operations only) the coefficient matrix to the
form given in Exercise 3.

11 The following are reduced coefficient matrices of systems of linear algebraic
equations. Which has a unique solution?

123 4 /123 4
012 3 01 23
o C @lo 01 2 Gl 0 0 1
000 1/ 0000

24 DETERMINANTS

Consider a system of two equations in two unknowns:

a11%; + a2x; = by
Ay1X%y + Gz3%, = b,

et
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~ (ji)th element of B. Also > aby; is the G 7)th element of AB. The

k=1

(i,j)th element of 4B is
Z ajkbki = z 5kj5ik = z Eikﬁkj
k=1 k=1 k=1

which is the (i,j)th element of BA. This completes the proof.

EXERCISES 2.4

1

2

W

LN

Show that there are n! = n(n — D@ — 2) -2 .1 different permutations of the
integers 1,2, 3,..., n.

Given a permutation Py of 7 integers. Obtain P, from P, by one inversion.
Obtain P, from P; by one inversion. Show that P; can be obtained from P,
by an even number of inversions. Use this to show that evenness or oddness of a
permutation is independent of the particular set of inversions used to put it in
normal order.

Show that a permutation is even or odd according to whether it takes respectively
an even or odd number of inversions to obtain it from the normal order.

Write out all permutations of 1, 2, 3, 4, and classify them according to whether
they are even or odd.

Write out the complete expansion of the determinant of a general 4 x 4 matrix.
There should be 24 terms.

Evaluate the following. determinants

103 -1 2

123
w2 ®hse o 1.3 1
3 4 7809 -1 2 -1 3
2 1 2 -3

Evaluate the following determinant by showing that it is equal to an upper-

triangular determinant (one in which all elements below the principal diagonal
are zero).
1 2 -1 3 -2
2 0 4 -5 1
-3 1 6 0 -7
0o 3 1 -5 2
-2 6 3 -1 2

8 Consider the three basic row operations of Sec. 2.3. Show that if a square matrix

has a zero determinant, after any number of basic row operations the resulting
matrix will have a zero determinant. Also show that if a square matrix has a
nonzero determinant, after any number of basic row operations the resulting
matrix will have a nonzero determinant.

-
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9 Prove that a square matrix has a zero determinant if and only if it can be reduced
. to upper-triangular form with at least one zero element on the principal diagonal.
10 Restate Theorems 2.3.3 and 2.3.5 in terms of the vanishing or nonvanishing of
the determinant of the coefficient matrix. ‘
11 Determine whether or not the following system of equations has'a unique solution
by evaluating the determinant of the coefficient matrix:

2x1+ Xy — X3 + X4=—2
X — X3— X3+ x4=1

X; =A%y = 255 F 2%,
4xy + x; — 3x3 + 3x,

I

-1

]

]2 Determine the values of A for which the following system of equations has a

nontrivial solution:
' 9X1 - 3x2 . = lxl
—3x; + 12x, — 3x3 = Ax;
— 3x; + 9x3 = Ax3
13 Determine the values of A for which the following system of equations has a
nontrivial solution:
X + xp = Axy
—X1+'&2= kﬁ
For what values of A is there a real nontrivial solution?
14 Let Azand Bbe m x nmatrices. Show that
@ A=4
e ~ -~
(¢ A—B=A4A-B

2.5 INVERSE OF A MATRIX

3
One of the most important concepts in the matrix theory is the notion of
inverse of a square matrix.

Dfeﬁnition 2.5.1 IfAisann x nmatrix, then 4 has an inverse if there
exists an ».x n matrix 47 such that 47'4 = A4~ = I, where I is
the nth order identity.

Theorem 2.5.1 If a square matrix has an inverse, it is unique.

PROOF Suppose B # A~' was also an inverse for 4. Then
BA = AB = I. But then

A= A" = 4" 4B) = (A" 'A)B=IB =B
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EXERCISES 2.5

1 Which of the following matrices have inverses?

1
| 1) of) e (o
| 1

P -
@0 -1 o) —&f——
10 -1 -1z
-2 1
_— 123 4
0123
Do o1 2
0001

2 Find inverses of matrices in Exercise 1 which are nonsingular.
3 Find the inverse of the diagonal matrix}

|

| 1000
| 0200
i 0030
i 000 4

‘When does a diagonal matrix have an inverse? State a general rule for finding the
inverse of a diagonal matrix.

4 Show that an upper-triangular matrix with nonzero elements on the principal
diagonal has an inverse which is upper-triangular.

5 Solve the following system of equations using Cramer’s rule.

i X+ X, — x3=17
; —X; + 2%, + x3= -3

2%; — Xy +3x3=35
6 Solve the matrix equation AB = C for Bif
1 -1 2 0 1
Ad=1{-1 2 1 and C=|3 -1
" -1 3 : 1 5 -1

7 Let AX = B be a system of » equations in » unknowns with |4| = 0. Show
that there are no solutions unless all » determinants of matrices formed from 4
by inserting B in the » columns of A are zero. If solutions exist, are they unique?
Hint: Multiply both sides of 4X = B on the left by C, the transpose of the matrix
of cofactors of 4. .

T A diagonal matrix is a square matrix with zero elements off the principal diagonal.
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cos § —sin @
4= (sin 9  cos 0)
Find A1, Is A4 orthogonal?

9 If 4 and B are nonsingular, show that 4B is nonsingular. Show that

(ARt =BT

70 Let A be nonsingular. Show that A1 = (D

71 Let A benonsingular.-Show that(4=1)"* = 4. -——

]2 If AB = 0, B # 0, is A nonsingular?

13 If A% = 0, is 4 nonsingular?

14 If A is orthogonal, what are the possible values of 14]?

15 If Aand Bare o;thogonal, is AB orthogonal? Is A~* orthogonal?

16 If A and B are unitary, is 4B unitary? Is A~* unitary?

77 Define A° = I and A™" = (4™1)", n a positive integer. Let A be nonsingular,
Prove the general exponential formulas (4P)? = AP and APA? = AP, where
p and g are integers.

18 If Cis the matrix of cofactors of the elements of 4, what is the value of [C|?

*2.6 EXISTENCE AND UNIQUENESS THEOREMS

The two main questions concerning systems of linear algebraic equations
(other than methods of finding explicit solutions) are (1) whether solutions
exist (existence) and (2) if a solution exists, is it unique (uniqueness)? We have
dealt with these questions to some extent in Sec. 2.3. In this section, we shall
give a more systematic discussion of these two questions, but first we must
introduce a mew concept about matrices which can be defined in terms of
determinants.

Every matrix, whether square or not, has square matrices in it which can
be obtained by deleting whole rows and/or whole columns. There are of course
only a finite number of such square matrices. Suppose we compute the deter-
minants of all these matrices. We define the rank of the original matrix in
terms of these determinants. o

Definition 2.6.1 The rank of a matrix 4 is the order of the largest order:
nonsingular matrix which can be obtained from A4 by deleting whole rows;
and/or whole columns. We denote this number by rank (4); rank (0)

[ i




. LINEAR ALGEBRAIC EQUATIONS 83

1 -1 2 -1 1
0o 2 1 =3 1

—-{ 0 3 =5 3 -4 |- -5 3 -4
0 3 =5 3 —4 0 0 o0 o
0 0 0 0 o0 O 0 0 o0 o

-1 2 -1 1
2 1 -3 1

O O oW
w

It is apparent that the rank of the coefficient matrix equals the rank of the
augmented matrix, which is 3. Therefore, the system has a solution, but it is
not unique because 3 < 4; the number -of unknowns-— The ‘general solution
of the system will contain one arbitrary parameter.

EXERCISES 2.6

3
= .
1
2
{
3
4
5
3

Prove that the rank of the augmented matrix of a system of linear algebraic
equations cannot be less than the rank of the coefficient matrix.

Consider the three basic column operations on matrices: (1) multiplication of a
column by k # 0, (2) interchange of two columns, (3) addition of one column
to another. Prove that these column operations cannot change the rank of a
matrix.

State Theorem 2.3.3 in terms of the rank of the coefficient matrix. Prove your
version.

State Theorem 2.3.5 in terms of the rank of the coefficient matrix. Prove your
version.”

Determine whether the following systems of equations have solutions; if so,
are they unique? ’

@ x+x—- x3=1 ® X, + +2x3 - x, =0
2x%1 + X, + 3x3 =2 2x1 + X — x5 =5
Xy — 5x3 =1 =Xy + 2%, + x3+ 2x, =3
: 3%, — 2x3 + Sx, =1
(© 2% = x4+ x5=1 ) Xy = 2x; +3x3 — x4+ x5=15
Xy + 2%, —3x3=0 —X; + 3x, + 4x3 + x4 =2
X1+ 3%, — x3=2 2x,; + X3 — 2x, + 2x5 = —1
Xy — Xp— 2x3 = —3 X2+ 5x3 — 2%, — x5=0

Consider the system of equations 4X = B, where 4 is m x m. Suppose that
rank (4) = m — 1. Prove that the system has a solution if and only if the m
matrices formed from 4 by replacing the columns by B are all singular.
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EXERCISES 3.2

7 Letu=(1,—-21) and v= (3,1,—4). Compute u + v, & — Y, 2u, —%v, and
—u + 2v. Make sketches of arrows representing each of these vectors.

2 Letu = (1,—2,1). Compute [u] and 6;, 65, 85, the minimum nonnegative angles
from the positive coordinate axes to the arrow of the vector. '

3 A force in pounds is exerted on a body as designated by the vector 3,1,—2).

. Find the magnitude and direction of this force. Another force of (—4,5,3), also

measured in pounds, is exerted on the same body. Find the combined effect
(resultant) of the two forces acting together. Find the magnitude and direction
of the resultant. Hint : The resultant is the vector sum of the two forces.

4 Letu= (2,0,—3) and v = (—14,5). Find the cosine of the angle between the *
two vectors. If cos 8y, cos B2, cos 05 are the direction cosines of u and cos ¢y,
cos 5, cOs @5 are the direction cosines of v, show that cos f = cos 6, cos ¢; +
cos B, cos ¢, + cos 85 cos ¢, where 0 is the angle between the two vectors.

5 Consider a nonzero vector u represented by the arrow from O to P. Consider
the vector v represented by the arrow from O to Q. The projection of vonuis
defined to be the vector O to N, where N is the foot of the perpendicular drawn
from Q to the line of u. Show that this projection is given by

T
Compute the projection of (1,—2,1) on (3,1, —4).

6 Consider a plane represented implicitly by ax + by + ¢z = d. Consider a
vector v represented by an arrow from the point (xg,Y0,%0) it the plane to the
point Q. The projection of v on the plane is defined to be the vector from
(X0 Y0sZ0) to N, the foot of the perpendicular drawn from Q to the plane. Let
u = (a,b,c). Show that the projection of v on the plane is given by

u°v

—u
[uf?

v —
Compute the projection> of (2,3,—- 1) on the plane givenby x — 3y + 2z = 7.
7 Show that the distance from the point (x1,¥1,71) t0 the plane represented by
ax + by + cz = dis given by
lax; + by, + ¢z — d|-
VJa + b + ¢

Compute the distance from (1,—2,3) to the plane represented by 2x — y + 3z="1.
8 Find an equation of the line through the point (1,2,—3) in the direction of the
vector (—2,3,5).
9 Find an equation of the line through the two points (3,—5,7) and (-2,1.4.
10 Find an equation of the line through the point (4,3,—5) and perpendicular to the
plane given by 2x + 3y + 4z = 3.

i
!

11

12

13

14

15

16

17

18

19

20

21

22
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Find an equation of the line of intersecti ;
] on of the two planes gi
2x+ 3y —4z=5and —x + Ty + 5z = 2. . ? siven b
Find an equation of the plane through thi igi
e origin and parallel to th

(1,—2,3) and (5,0,7). ° vestos
Find an implicit representation of the ini i

plane containing the thr -
PR g ee points (1,—3,4),
Find an equation of the plane containing the two lines (x,3,2) = (1,—3 4) +
12.5,~1) and (5,3,8) = (L,=34) + 5(0.7,-4). -
Find ar‘l equation of the plane containing the point (1,2,3) and perpendicular
to the line (x,y,z) = (1,—3,4) + #(2,5,—1). ‘
One wa:y to compute a three-dimensional vector perpendicular to two given
vectors is to use the vector product. Letu = (uy,uyus) andv = (vl,izz,v3) be two
nonzero and nonparallel vectors. Show that

W=u XV = (U3 — Usly, UsDy — UyU3, UVy — UsDy)
is a vector perpendicular (orthogonal) to both u and v. The vector product has
no counterpart in other spaces.
Shc?w that ju X v| = |u| |v| |sin 6], where 6 is the angle between u and v. Hint:
Write u = [u](cos 8;, cos 0, cos 63) and v = |v|(cos @4, cOS @3, COS ¢3).

Repeat Exercise 13, using the vector product to compute a vector perpendicular
to the required plane. ‘

Let u, v, w be three vectors whose arrow representations from the origin form the

three edges of a parallelepiped. Show that |u- (v X w)| is equal to the volume
of the parallelepiped. :
Show that:
' Uy Uy Uz
@ u-vXw=|v; vy 03
Wy Wy Wi

® uFxw=w-@xv)=v-(wxu.
© u:(wxv=—-u-(vxw.
Consider three planes given implicitly by

ay1X + apy + ag3z = by
ay1X + @3y + 4237 = by
a31X + a3y + azsz = by

The intersection of these three planes could be (1) empty, (2) a line, (3) a plane
o.r (4) a point. In terms of the solutions of the three equatiohs in thr;e unknown;
give an algebraic condition for each of the cases.

A point moves along a curve in three-dimensional space with its displacement
vector from the origin given by the vector-valued function of time r(t) =
(XFI), y(),z(¢)), where x, y, gnd z have first and second derivatives. The ﬁrsf deriv-
ative r’(¢) = v(t) = (x'(0),y'(£),z'(?)) is called the velocity of the point, and the
second derivative a(t) = r"(¢) = v'(z) = (x"(¢),y"(¢t),2"(t)) is called the acceleration.

|
i
i
i
|
1

P
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I v(z) # 0, show that the velocity is tangent to the curve. The magnitude of the
velocity is called the speed. If the speed is constant and positive, show that the
acceleration is normal to the curve (perpendicular to the tangent vector).

23 Tfthespeeds(r) = |v(z)| of a point is not zero, show thata(f) = s’(1)T + s(:)|T’ln,
where T is a unit tangent vector and n is a unit normal vector.

3.3 AXIOMS OF A VECTOR SPACE

e e N We have already seen several examples of algebraic systems which, at least in
certain respects, behave similarly. We have in mind those properties of complex
[t numbers, two-dimensional euclidean vectors, three-dimensional euclidean
: vectors, and matrices with respect to addition and multiplication by a scalar.
We now take the modern mathematical point of view and define abstract
systems with those properties we wish to study. These systems we shall call
vector spaces. This approach will have the distinct advantage that any properties
we derive from this definition will be true of all vector spaces, and we shall not
have to study each system separately as it comes up. We begin with the axioms
for a vector space. )

Definition 3.3.1 Consider a system V of objects, called vectors, for
which we have defined two operations, addition and multiplication by a
scalar, either real or complex. Then V is a vector space if these operations
satisfy the following properties:

Al Ifuandvarein ¥, thenu + visin V.
A2 a+v=v+u
A3 u+ +wW=@@Fv)+w
A4 There is a zero vector 0 in ¥'such thatu + 0 = uforalluin V.
A5 Ifuisin ¥, then there is a vector —uin ¥, called the negative
of u, such thatu + (—u) = 0.
_ M1 Ifaisascalar and uisin V, then qu is in V.
M2 a(u + V) = au + av.
M3 (a+ bu = au+ bu
M4 ({abu = a(bu).
M5 lu=nu

If the set of scalars is the set of all real numbers, then we say that Vis &,
real vector space. If the set of scalars is the set of all complex numbers,
; then we say that V'is a complex vector space.
|
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Muitiplying the first equation by a and the second by b and adding, we have
a(ax, + bxs) + Blays + by;) + v(azy + bz,) =0
Therefore, au + bv is in the plane. We argue geometrically to show that these
are all the subspaces. If there is a point (%0»Yo0sZ0) # 0 in the subspace,
then the whole line (fxg,to,t2), —© < t < 00, IS in the subspace. ¥f.these
are all the points in the subspace, then we have a line through the origin. If
there are two points u = (x;,¥4,71) and v = (x5, ¥2.Z2), such that 0, u, ax?d v
" are noncollinear, then the subspace contains the plane through the origin given
by au + bv, where a and bare any real numbers. If these are all the points., then
we just have a plane through the origin. If there is a point w off the plane ‘m the
subspace, then we have the whole space because the subspace then contains all
points of the form au + bv + cw, where a, b, and ¢ are any real numbers.

EXAMPLE 3.3.6 Letu, u,, us, ..., u, be a finite number of vectors from a
vector space V. Consider the subset U of all vectors of the form

u = cqly + cuy + cuz + 0+ G,

where ¢y, €3, Cs5 - - - » € 15 any set of scalars (real if V is a real vector space
or complex if ¥ is a complex vector space). Show that U is a subspace. Let
u be as shown above and

v =y + YUy + Yaly + 0+ Pl
Then
au + bv = (ac; + byuy + (ac, + by, + -+ + (ac, + by,

so that gu + bv is in V. In this case, we say that the set uy, up, U3, ..., W,
spans the subspace U.

EXERCISES 3.3

1 (a) Consider a vector space consisting of one vector 0 with addition ancll multi-
plication defined by G) 0 + 0 =0 and (i) a0 = 0. Prove that this space
(the zero space) is a vector space.
(b)) Show that all other vector spaces contain an infinite number of vectors.
2 Show that the system of m x n matrices with complex elements is a complex
vector space where addition and multiplication by complex scalars are the usual
matrix operations.

P
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3 Show that the system of a-tuples of complex numbers is a complex vector spacé
where addition and multiplication by a scalar are défined as in Example 3.3.2.

4 Show that the collection of all polynomials of degree r or less in the complex
variable z with complex coefficients is a complex vector space, with addition and
multiplication by a complex scalar as defined in Example 3.3.3.

5 Consider the collection of all real-valued Riemann-integrable functions of the real
variable x defined on the interval {x l 0. <.x < 1}. Show that this is a real vector
space with addition and multiplication by a scalar das defined in Example 3.3.4.
Is the space of Example 3.3.4 a subspace of this space? Is it a proper subspace?

6 Consider the collection of all real-valued differentiable functions of the real variable
x defined on the interval {x| a < x < b}. Show that this is a real vector space
with addition and multiplication by a scalar as defined in Example.3.3.4. Is thisa__

- subspace of real-valued continuous functions on {Bc [ a < x < b}? Is it a proper
subspace? . . o

7 Given a vector space V. Prove that in ¥, qu = 0 implies a = 0, u = 0, or both.

Characterize all the subspaces of R?.

9 Consider the system of homogeneous linear algebraic equations 4X = 0 in the
real variables (xy, X5,...,x, with real coefficients a;;, i=1,2,...,m;
j=1,2,...,n Any solutions will be found in R"”. Prove that the set of all
solutions is a subspace of R".

o

3.4 DEPENDENCE AND INDEPENDENCE OF VECTORS

We now come to the important concepts of dependence and independence of
vectors. Suppose ug, U, ..., u, is some finite set of vectors from a vector
space V. A linear combination of these vectors is a sum of the form

x
: ey + Gty + U = > C
i=1

where ¢y, ¢y, ..., ¢, are scalars. Obviously such a linear combination is 0
k
if all the ¢’s are zero. We say that w,, u,, ..., are dependent if Z cu; =0 for
i=1
some set of scalars, not all zero. If this is impossible, then we say that the set
of vectors is independent. '

Definition 3.4.1 A set of vectors uy, u,,...,u, in ¥ is dependent if

k
there is a linear combination ZCiu,- = 0 with the scalars ¢y, ¢,,..., ¢
k i=1
not all zero. If > ¢, = 0 only for ¢, = ¢, = *+-
i=1

set of vectors is independent.

= ¢, = 0, then the

P P




gy
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EXERCISES 3.4

1

2

10

u

12

13

Show that any set of vectors from a vector space ¥ is dependent if the set contains
the zero vector.
Show that in R® a set of two nonzero vectors is dependent if and only if they are
parallel.
Show that in R® a set of three nonzero vectors is dependent if and only if they are
all parallel to a given plane.
Show that in R3 any set of three mutually perpendicular vectors is independent.
This shows by Theorem 3.4.2 that any vector in R3 can be written as a linear
combination of a given set of three mutually perpendicular vectors.
Determine whether the vectors (1,0,1), (0,1,1), (1,—1,1) are dependent or.in-
dependent in R3. Can the vector (1,2,3) be expressed as a linear combination of
these vectors? .
Determine whether the vectors (1,—1,1,—1), (2,0,—3,1), (0,1,2,~ 1), (4,—3,—3,0)
are dependent or independent in R*. Can the vector (1,2,3,4) be expressed as a
linear combination of these vectors? .
Determine whether the vectors (1,0,1,0), (0,2,—1,3), (1,4,2,— 1) are dependent or
independent in R*. Can the vector (4,6,7, — 5) be expressed as a linear combination
of these vectors?
Determine whether the vectors (1,;,—1), (1 + 40,1 — #), (,—1,—7) are
dependent or.independent in C3.
In the space of continuous real-valued functions defined on the interval
{x | 0 < x < 1}, are the functions x, x> — 1, and x> + 2x + 1 dependent or
independent?
In the space of real-valued polynomials of degree 3 or less, show that the
polynomials

Po(®) = —#(x — 1)(x — 2)(x — 3)

P1(x) = Ix(x — 2)(x — 3)

Pa(x) = “3x(x — Dx - 3)

P3(x) = dx(x — D(x - 2)

are independent. Show that any real-valied polynomial p(x) of degree 3 or less
can be expressed uniquely by

) = pOpe() + p(D)p1(¥) + pp2(x) + p(3)ps(x)
Let 4 be an # x_n matrix with real elements. Show that the followiug statements
are all equivalent:
(@) A is nonsingular.
() AX = 0 has only the trivial solution.
(c) The columns of 4 are independent in R™.
(d) The rows of A are independent in R™
Show that the functions 1, x + 1, x> + x + 1,...,x* + 21 + ... £ x + 1
are independent on the interval {x [ 0 < x < 1}." Does the result depend on k?
Show that the functions e*, e2*, ¢3* are independent on the interval {x f 0<x<1}
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14 Are the functions €%, xe®, x?¢* dependent or independent on the interval
{x]osx=1}?

15 Are the functions sin x, cos x, x sin x, X cos x dependent or independent on the
interval {x [0 < x < 27}?

16 Suppose f(x) and g(x) satisfy the differential equation ¥” + p(x)y = 0 on the
interval {x ] 0 < x < 1}, where p(x) is continuous. All functions are real-valued.
Show that the Wronskian of fand g is constant. If £ © = 1,77(0) = 0,900) = 0,
g'(0) = 1, are f and g independent? Hint: Compute (f'g — g'f).

3.5 BASIS AND DIMENSION

We have already seen several examples of vector spaces in which every vector
can be expressed as a linear combination of some finite set of vectors. The
collection of polynomials of Example 3.3.3 can all be expressed as linear
combinations of the polynomials 1, x, x2,..., x". Theorem 3.4.2 shows that
"any vector in R" can be expressed as a linear combination of some independent
set of 7 vectors. In Example 3.3.6, we showed that the collection of all linear
combinations of a given set of vectors in ¥ forms a subspace of V. But a sub-
space is a vector space, so this is another example of a vector space with such a
representation. We formalize this situation by giving the following definition.

Definition 3.5.1 A given set uy, u,, ..., U, from a vector space V is
said to span V if every vector in ¥ can be written as a linear combination
of uy, Uy, .oy W

Theorem 3.5.1 If ¥ is not the zero space and is spanned by a set
uy, Uy, ..., U, then there is an independent subset which also spans V.

prooF If Vis not the zero space (consisting of the zero vector only),
there is at least one nonzero vector in ¥. Therefore, there is at least one
nonzero vector in the given spanning set. Hence, there are subsets of the
spanning set which are independent. Now suppose the given set
U, W, ..., is dependent. Then cquy + cup + - + 6 = 0 with §
the ¢’s not all zero. Suppose ¢, # 0 (f ¢, = 0, we can relabel the vectors
so that the kth scalar is different from zero). Then

= _—clul + __i?-uz 4o 4 —Ck-3 Wi
Cre Cie Cx

Now since any vector in ¥ can be written as a linear combination
uy, u,, . . ., U, and since w, can be written in terms of uy, Uy, . - ., W=t
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., u, span V. Proceeding as in the proof

i s that vy, Uy, Uz, - - ]
oo sting ¢ g them with v’s, we even-

i ’s and replacin
of Theorem 3.5.3, casting out u’s an . g
tually end up with 7 of the v’s as a spanning set. But jchen, since m > ,n,
there are v's which can be expressed as linear combinations of 7 of the v’s,
contradicting the independence of the v’s. This completes the proof.

arbitrarily large'i' independent sets of vectors

e vector spaces with . ‘
i p dimensional.

(see Examples 3.4.4 and 3.4.5). These vector spaces c_:annot be finite-
We simply say that such spaces are infinite-dimensional.

- - Pefinition-3.5.5 A vector space with independent sets of arbitrarily
many vectors is said to be infinite-dimensional.
We conclude this section with a theorem which will simplify the search
for bases of finite-dimensional vector spaces.

Theorem 3.5.5 In an n-dimensional vector space (# = 1) a set of n
vectors is a basis if (i) it spans the space or (i) it is independent.

prOOF (i) If a set of vectors spans the space but is dependent, then

set of m vectors which spans the space and is independent

i b
e sis with fewer than n

with m < n. But this implies that there is a ba
tradicting Theorem 3.5.3.
T It , ., u, is independent but does not

(i) If a set of n vectors Uy, Uy, . . ' '
span the space, there is at least one vector v.which cannot be written as a

linear combination of the w’s. Consider a linear combination
oV + cquy + ey + ot Gy = 0
If ¢ # O, then v is a linear combination of the ws. Therefore, ¢ = 0.

If any of ¢y, €3, - - - » Cy 1S DO ZETO, then the u’s are dependen_t. Therefore,
the set v, ug, Ugy .o U, IS independent. ‘But this cont;adwts Theorem
b * X ]

3.5.4. Hence, uy, Uy, - .., U, SPan the space.

EXERCISES 3.5

. . . 3.
] Determine which of the following sets of vectors, if any, 1s a basis for R”:
@ @10, ,-LD, 0,10
® 1,2,3), 1,0,1), 0,—1,2)
(C) (0:031)’ (Oyl’— 1)3 (03 - 131)

+ Here “large” refers to the number of vectors in the set.
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2 Each of the following sets of vectors spans some subspace of R*. Find the dimen-
sion of the subspace in each case. o
@ (@1,1,1,1), (1,0,1,0), (0,1,0,1), (1,—1,1,—1)
® 1,2,34),(-1,0,1,3), (0,1,—1,2), (1,2,—1,4)
© (1,2,3,0), (1,0,1,0), (0,—1,2,0), (—1,1,3,0)

@ (-1,34,2),1,-3,-4,-2), (—2,6,8,4), (2,—6,—8,~4)

3 Show that the vectors (1,1,1), (1,—1,1), (2,0,3) form a basis for R®. Find the
coordinates of (4,5,6) with respect to this basis.

4 The vectors (1,1,1,1), (1,0,1,0), (0,1,0,1), (1,—1,1,—1) span a subspace of R%.
Is the vector (4,—2,4,—2) in that subspace? If so, express the vector as a linear
combination of the given vectors.

5 Which of the following sets of vectors is a basis for C*?
(@ (9,0,0); (0,1,0,0), (0,0,5,0), (0,0,0,i)
® (1,0,0,0), (1,1,0,0), (1,1,1,0), (1,1,1,1)
© (1,1,1,1), GiiD), (0,1,0,D, (7,0,:,0)

6 Show that the space of differentiable real-valued functions defined on the interval
x| 0 < x < 1} is infinite-dimensional. :

7 Show that the space of Riemann-integrable real-valued functions defined on the
interval {x | 0 < x < 1} is infinite-dimensional.

8 Prove that a vector space with an infinite-dimensional subspace is infinite-
dimensional. Is the converse true?

9 Show that the set of vectors (1,1,1,1), (0,1,0,1), (1,0,2,0) is independent in R*.
Construct a basis in R* containing the three vectors.

10 Let ¥ be an n-dimensional vector space. Given a set of vectors u;, u,, ..., u,
k < n, which are independent, prove that there is a basis for ¥ containing the
given set.

36 SCALAR PRODUCT

We have already seen a couple of vector spaces in which it was useful to
introduce a kind of scalar-valued product between pairs of vectors. We did this
in the systems of two- and three-dimensional euclidean vectors when we defined
a scalar productf (dot product). The concept is, in fact, so useful that we shall
now postulate a set of properties for a scalar product in general and study
the properties of such a product. Then any particular vector space which has a
suitable scalar product will have these additional properties. It is not necessary
to have a scalar product defined in the space in order to have a vector space,
but in most cases of interest to us we shall have a scalar product.

T This is not to be confused with multiplication by a scalar, where the product is
between a scalar and a vector with the result a vector.




