122 INTRODUCTION TO LINEAR ALGEBRA AND DIFFERENTIAL EQUATIONS

EXAMPLE 3.64 Letfbea complex-valued continuoust function of the real
variable x defined on the interval {x | @ < x < b}. Prove that

b
f f(x) dx

We can consider f as a vector in the complex vector space of complex-valued

< (b — @)M, where M = max |f(x)]

continuous functions defined on the interval {x | @ < x < b}. Thereadershould™ "

verify that this is a vector space. In this space we introduce the scalar product
b J—
)= j )36 dx

The reader should check the five properties. Using this scalar product ar}d the
Cauchy inequality for fand g = 1, we have L

b b 1/2 b 1/2
(e« (i ([

< [(b — M2 — ) = (b — OM

It is very common to refer to vectors in a vector space as points. For
example, in R® if we have a vector (x, ,z), we could consider the three numbers
as the coordinates of a point in Jthree—dinnensional euclidean space. Thinking,
in general, of vectors as points in a vector space V with a scalar product, we can
introduce the concept of distance between two points. Let u and v be in V;
then we define the distance between u and v as |u — v||. This distance function

has the following four desirable properties:

@ lu—vl=Ilv—u
@ fu—v[)=0.
@) Ju—v| =0ifandonlyifu=yv.
@) lu—v]<lu—wl+jw=—vl (triangle inequality).
These properties follow easily from Theorem 3.6.3. For example, for (1),
lu— v = [(=1)v — W] = |=1][lv — u| = [v — uf. For (iv), we have
Jo—v] = l@—w+ w=9<u—w+[w—V]

Whenever a vector space has a distance between pairs of points defined satisfying
properties (i) to (iv), we say it is a metric space. ‘We have therefore shown that

+ Continuous here means that both real and imaginary parts are continuous functions
of x. Iff(x) = u(x) + iv(x), where u and v are real, then

fPreyax= §2 uGy ax + i o) dx

~~
[
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eYery vector space with a scalar product is a metric space. There are, how

distance functions which are not derivable from a scalar product (se,e Exei:sré

%6.11), Tl.lere a're even vector spaces which do not have a distance functios
ut such discussions are beyond the scope of this book. o

EXERCISES 3.6

I Letu=(1,-230) and v = (~24,5,—1). Compute (u-v), (v- W), (20 v), and

’ (u-4u + 3v).

& 2 {Coln(s)lder the szpace of continuous real-valued functions defined on the interval-
; X0 < x <27} Let = si =
| ) f(?c) sin x and g(x) = cos x. Compute (f- g), 1 /1, and

3 Shoc\;v that the.space of E)fample 3.6.4 is a complex vector space. Show that the
product of this example is a scalar product. Let f(x) = ¢** and (x) = e2ix
Compute (f- g), where @ = 0 and b = 27, e

4 Il;:tt: be a complex vector space with scalar product (@-v). Let [u] = (u-uwt?

e
. alinorm. Show that |u — v > l][u” - Hv”l. Hint: Apply the triangle
inequ: tytou:(u—v)+vandv=(v—u)+u. .

5 Let ¥ be a real vector space with scalar product (u-v). Let [u] = (u-u)!/? be
1':he norm. Prove the. pythagorean theorem: [u + v|2 = [u]® + |v|?2 if and onl
if (w+v) = 0. Why is this called the pythagorean theorem? g

be the norm. Prove the paralielo:
. gram rule: [u + v[? + [ju — v|2 = 2
2[v|®>. Why is this called the parallelogram rule? | : "l 2l
7 ;foogz rttt'lat (ljauIc{hy’s inequality is an equality if and only if the two vectors are
ional. Hint: Consid iscrimi
prop nsider the proof for the case when the discriminant is

8 Show that the triangle inequality (Theorem 3.6.3) is an equality if and only if

.

negative real number.
9 Letfbe a continuous real-valued function defined on the interval {x [ a<x<b}

Prove that
b 2 b 1/2 b 1/2
 vep e ([ 1ol @) ([ 1reor )

10 1L:t VvV l:‘e the vector space of n-tuples of real numbers. If u = (uy, u, u,),
e |[ul]' = luy| + |uy] + <<+ + |u,|. Show that lu — v[* satisfies ’thc ’fo ,
properties of a distance function. "

Sh that ”ul f E i
se 1 i .
1] ow ¢ ! O XEercl 0 Cann?t be deﬂved ﬁ'om a scalar PIOdllCt- Hint:

6 Let ¥V be a complex vector space with scalar product (u*v). Let [u = (u-u)*/2 -

the two vectors are proportional and the constant of proportionality is a non-

‘g

il
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12 Provethata scalar product can be defined for any finite-dimensional vector space.
Hint: If the dimension is # > 1, there is a basis ug, Uj, . . . , Uy, Then (72 W) =

n

Z v;#; is a scalar product, where v; and w; are coordinates with respect to the

| i=1
i i basis.

37 ORTHONORMAL BASES _

1n finite-dimensional vector spaces with a scalar product, we can select bases
o with special properties. These are called orthonormal bases, and they have
oo  many desirable properties, which we shall bring out in this section. £3

R Definition 3.7.1 Let ¥ be a vector space with a scalar product (u-v).
M Two nonzero vectors are orthogonal if (u-v) = 0. A vector u is normal-

b ized if u] = 1. A set of vectors uy, u,,..., W is orthonormal if
N (ui-uj)=5ij,i=1,2,.A.,k;j=l,2,...,k.

o
} Theorem 3.7.1 A set of orthonormal vectors is independent.
|

PROOF Let u;, Uy, ..., be an orthonormal set. Consider
cuy + Gl + ot Gl = 0. Let1 <j < k. Then

[ 0=(C1“1+62“2'+"'+Ck“k'“.i)=CJ'

‘ Theorem 3.7.2 Every finite-dimensional vector space which is not the
4l zéro space has an orthonormal basis.

: ‘ prROOF If ¥ has dimension n > 0, then it has a basis ¥y, ¥2, .-+ Y £
I pone of which is zero. We shall now discuss a process for constructing an
orthonormal basis from a given basis. We start withv,. Letu; = vy/[vl.
i Then ju, || = 1. Next let

; §y = 2T

. v, — eyl

il . where ¢; = (v - uy). Then

‘\ ! ‘ (u, . uy) = (Worm) — o w) _

\ - fvo — cxmyll :
\ il and |lug]. = 1. We must check that |[v, — cqu || # 0. If mot, ¥z would
Al il be a multiple of v, and the v's would not be independent. We now have
[‘\ L 1, and u, orthonormal. Next we let ‘
vy — CUy — C3llp

flvs — cony — (AN
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EXERCISES 3.7

10

11

12

13

Test the following set of vectors in R3 for independence and construct from it an
orthonormal basis: (1,0,1), (1,—1,1), (0,1,1).

Test the following set of vectors in R* for independence and construct from it an
orthonormal basis: (1,0,1 0, 1,—1,0,1), 0,1,—-1,1), (1,—- 1,1, -1.

Consider the space of real-valued polynomials of degree 2 or 1ess’ defined on the

interval {x] —1 < x < 1}.- Using the scalar product (p-g) = jl 1 P(0g(x) dx,
construct an orthonormal basis from the independent polynomials 1, x, x

Consider the n-dimensional real vector space V. Let ug, up,..., U, and

Vi, V2,---5 Vo be two orthonormal bases for V such that v; = Z il
. k=1

i=1,2,...,n Prove that the matrix A with elements a;;, A8 orthogonal.

Express the u’s in terms of the v’s.

Consider the n-dimensional complex vector space V. Let iy, Uy, ..., U, and

n
V4. ¥zs...» Vs be two orthonormal bases for ¥ such that v; = > a,
=1

i=1,2,...,n Prove that the matrix 4 with elements a;; is unitary. Express
the w's in terms of the v’s.

Given two arbitrary bases uy, Up,.. ., v, in a vector space V'

u, and vy, V5,...,

n

z @y, Prove that the matrix 4 with elements a;; is nonsingular.
k=1
Express the w’s in terms of the v’s.
Consider the plane given implicitly by the equation x + y + z = 0 in euclidean
three-dimensional space R3. Construct an orthonormal basis as follows: select an
orthonormal basis for the subspace consisting of those points in the given plane
and then find a third unit vector orthogonal to the given plane.
Consider the subspace of R* spanned by the two vectors u; = (1,0,1,0) and
u, = (1,-1,1,—1). Construct an orthonormal basis v;, v, for this subspace.
Now construct an orthonormal basis for R* containing v; and v,.
Given any subspace U of dimension 72 = 1 in an n-dimensional vector space ¥
(m < n), prove that ¥ has an orthonormal basis consisting of m vectors in U
and n — m vectors orthogonal to all vectors in U.
Given a vector v in an n-dimensional vector space ¥ and given a subspace .U of
dimension m (1 < m < ). Prove that v can be expressed uniquelyasv = u + W,
where u is in U and w is orthogonal to U (orthogonal to all vectors in U). uis
called the projection of v on U.

Find the projection of (1 2,3) on the plane given implicitly by x + ¥ + z = 0
(see Exercise 7).

Find the projection of (1,2,3,4) on the subspace of R* spanned by u; = (1,0,1,0)
andu, = (1,—-1,1,—1) (see Exercise 8).

Show that the space of m x n real matrices is isomorphic to R™. Exhibit a
one-to-one correspondence.

such thatv; =

.
ui

0
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14 Show that the space of m x r complex matrices IS isomorphic to C™. EXhlblt

. a one-to-one correspondence. :

15 Show that the space of complex-valued polynormals in the complex variable z
of degree n or less is isomorphic to C*+1,

16 Prove that two finite-dimensional vector spaces which are isomorphic have the
same dimension.

3.8 INFINITE-DIMENSIONAL VECTOR SPACES

We have already established the existence of infinite-dimensional vector spaces;
for example, the space of real-valued continuous functions defined on th;
interval {x | 0 < x < 1}. However, we have not had much to say about such
spaces for a couple of good reasons. One is that our primary concern in this
book is with finite-dimensional vector spaces. The other is that the theofy of
ir%ﬁnite—dimensional spaces is quite a bit more complicated than that for finite-
dimensional spaces. This theory is properly a part of the branch of mathematics
called functional analysis. However, it is possible to give a véry brief introduction
to the subject, which we propose to do in this section.

One of the easiest ways to obtain an infinite-dimensional vector space is

to extend from R", the space of n-tuples of real numbers, to the space of infinite -

sequences of real numbers (infinite-tuples). Let u = (ul‘, Uy, Us,...) and
v = (Ul.’ U2, U3, - . ) be infinite sequences of real numbers. We shall say that
u = v if u; = v;, for all positive integers i. We define the sum u + v =
(g + v1, Uy + vy, uy +v;,...) and multiplication by a real scalar a as
au = (auy, au,, aus, . ..). The zero vector we can define as 0 = (0,0, 0,...)
and the negative by —u = (—u;,, .). It is easy to verify that we
have a real vector space. However, since'we shall want to have a scalar product

in this space, we shall restrict the sequences somewhat. We shall want to define
the scalar product

—Uz, —U3,..

0
(@) = w0, + w0, + uzvy + 0= > uy
i=1

e 1/2
ful = ( S uf)
i=1

Since we are now dealing with infinite sequences, in order to ensure convergence

and hence the norm as

. &
we shall restrict our sequences to those such that Zuiz < o0. Since we have
. . 1 . i=1
but a restriction on the sequences which we have in the space, we shall have to
recheck the axioms. The only ones which can cause trouble are Al and
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PROOF  Clearly f+g is défined on all of U. Also, if U “and V are
defined on the same scalars and so are ¥ and W, then the same is true of
Uand W. Finally,

[fogl(au, + buy) = g[f(am, + buy)]
= glaf(u;) + &f(n,)]
= ‘{Hgf(“i)]“' bl f(w,)]
= a[fog]m,) + b[fog](uy)

EXERCISES 4.2

1

L 8Y

W

N

[*Y

X

Let U be R? and V be R2. Let f(w) be the reflection of u in the x axis; that is,
ifu = (x,), then f(W) = (x,— ¥). Show that fis a linear transformation. Find
the null space and range of A

Let U be R? and ¥ be R2. Let f(u) be the orthogonal complement of u with
Tespect to the line x = y; that is, if z is a unit vector along the given line, then
(u - 2)z is the projection on the line and u — (u - 2)z is the orthogonal complement.
Show that fis a linear transformation. Find the null space and range of A

Let Ube R® and ¥ be R®. Let f(u) be the reflection of win the xy plane; that is,
if u = (x,p,2), then f(u) = (x, ¥,—z). Show that fis a linear transformation,
Find the null space and range of f.

Let U be R® and ¥ be R>. Let f(u) be the reflection of w in the z axis; that is,
if w = (x,5,2), then f(u) = (—x,—y,z). Show that fis a linear transformation.
Find the null space and range of f. .

Let Ube R and P'be R3. Let f(u) be the orthogonal complement of u with respect
to the plane represented implicitly by x + y + z = 0. Show that fis a linear
transformation. Find the null space and range of /-

Let Ube C"and ¥ be C™. Let f() = cu, where cis a complex number. Show
that fis a linear transformation. Find the null space and range of f;

Let U= R*and V = R3. Let (x4,%2,%3,%,) be coordinates of u relative to the

standard basis in-U. Let ( Y1,¥2,¥3) be the coordinates of f(u) relative to the
standard basis in-¥, and

¢

V1= Xp = Xp+ 2x5 — x4
Y2 = =X+ 2x5 ~ 3x3 + x,
Y3 = X3 — 3x,+ 4x3 — x,

Show that fis a linear transformation. Find the null space and range of f.

LetU = C"and ¥ = C'. Letf(u) = ;. Show that fis a linear transformation.
Find the null space and range of 1
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9

10

11

12
13

14
I5

16

17

18

19

20

Tet U= Ctapd V= Ch Let f@) = u + up + - + u, Show that fisa
Iinear transformation. Find the null space and range of f.

Let U be the space of continuous real-valued functions defined on the interval
x|0 = x =<1} Let TLf] = fxe), 0 < %o < 1, where xo is fixed. Show that
T'is a linear transformation. Find the null space and range of 7.

Find the null space and range of the linear transformations of Examples 4.2.8
and 4.2.9.

Prove that for any linear transformation £, f(0) = 0.

Show that condition (iii) of Definition 4.2.2 can be replaced by the two conditions
flan) = af @) and fQuy + wp) = f@) + f(uy).

Find the most general linear transformation from R to R*.

Let f be a linear transformation from R” to R* represented by f(u) = Au, where
Ais n x n, uis the column matrix of coordinates relative to the standard basis
in U, and f(u) is the column matrix of coordinates relative to the standard basis in
Y. Show that the following statements are all equivalent by citing the appropriate
theorems:

(@) A is nonsingular.

® 14l #0.

(¢ The null space of fis the zero space.

(d) The dimension of the range of fis n.

(&) A is invertible.

(f) fhas an inverse.

(g) The columns of A are independent.

(®) The rows of A are independent.

(i) The equations AX' = B have a unique solution.

(j) The equations AX = 0 have only the trivial solution.

Let f be a linear transformation from R” to R™ represented by f(u) = Au, where
Ais m x n. Prove that fis not invertible if n > m.

A linear transformation f is said to be onfo if every vector in the range space isa
value of f(u) for at least one uin the domain. If the domain is finite-dimensional,
show that f is onto if and only if the dimension of the domain is equal to the
dimension of the null space plus the dimension of the range space.

Which of the linear transformations in Exercises 1 to 10 have inverses? Find the
inverses where they exist.

1f the domain and range of a linear transformation are the same and f1 =0
then f is called the identity transformation. Show that the composition of an
invertible linear transformation with its inverse (in either order) is the identity.
Find the compositions of the linear transformations of Example 4.2.5 and
Exercise 1 in both orders. Is the operation of composition commutative? Is the
operation of composition associative?

£

= o
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Theofem 4.3.9 Letfbe alinear transformation from the n—dimensi?nal
space U to the n-dimensional space V, represented by then x n rgafinx A
with respect to the bases uy, u,,..., W, in U al?d Vi, Vs, Vp IR V
Then f has an inverse f~* if and only if 4 is. mveruble: The matrix
representation of f —1is 41 with respect to the given basesin Uand V.

PROOF Let X be the coordinates of u with respect to uy, U, .. ., u:,,
Then Y = AX are the coordinates of f(u) with respc?ct to t.he ba.,s1s
¥4, V2, .- ., ¥V, Furthermore, f is invertible if and only if the filmensmn
of the null space is zero. Therefore, f is invertible if and gnqu if AX_ = 0
has only the trivial solution, and 4X = 0 has only 'fhe tr1v1?1 sohit:on if
and only if>A is invertible. Now suppose A~' exists. Then A7'Y =
A™1(4X) = (47'4)X = X. Therefore, X = A™'Y expresses the_ fc.?-
ordinates of u in terms of the coordinates of v = f(u). There.fore, A" is
the matrix representation of f~* relative to the given bases in ¥ and U.

EXAMPLE 4.34 Let U = R®and V = R3. Let f(u) be the c?/Eactor obtained
from u by first rotating u about the z axis through an angle of 90° in the countc.er~
clockwise direction and then through an angle of 90° in the cou‘nterclockw.me
direction about the x axis. We shall find a matrix representation of f with

respect to the standard bases in U and V.
fley) = (0,0,1)
fler) = (-1,00
fles) = 0,—1,0

Therefore, f has the representation

4 0 -1 0\ /x

x
¥yl =10 0 —-1})t»
z' 1 0 0/ \z

Now the matrix of the transformation is orthogonal and is therefore invertible.
The inverse of the transformation has the representation

X 0 0 1 x'
yl=|-1 0 o0}y
z 0 -1 0o/ \z

. - . -
In the next section, we study the question of how the representatlo'n of a
linear transformation changes when we change the bases in the domain and

range spaces.

o

1

.ul‘ Sk
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EXERCISES 4.3

I Find the matrix representation of the linear transformation of Example 4.2.1
with respect to the standard bases. Find the representation with respect to
arbitrary bases.

2 Find the matrix representation of the linear transformation of Example 4.2.2

" with respect to arbitrary bases.

3 LetU = R*®and ¥ = R2 Letu be any vector in R3, and let f(u) be the projection
of u on the xy plane. Find the matrix representation of f with respect to the stand-
ard bases.

4 Let U be the space of real-valued polynomials of degree n or less inthe real R

variable x. Let fbe the operation of integration over the interval {x l O0<x=<1}
Find the matrix representation of f with respect to the basis 1, x, x2,...,x"inU.

5 Find the matrix representation of the linear transformation of Exercise 4.2.1
with respect to the standard bases. Find the representation with respect to the
basis (1,1), (1,~1) in both domain and range spaces.

6 Find the matrix representation of the linear transformation of Exercise 4.2.2
with respect to the standard bases. Find the representation with respect to the
basis (1,1), (1,—1) in both domain and range spaces.

7 Find the matrix representation of the linear transformation of Exercise 4.2.4 with
respect to the standard bases. Find the representation of the inverse with respect
to the standard bases. '

& Find the matrix representation of the linear transformation of Exercise 4.2.7 .
with respect to the standard bases. Find a basis for the null space of the trans-
formation and a basis for the domain consisting of this basis and other vectors
orthogonal to the null space. Find a representation of the linear transformation
with respect to this new basis and the standard basis in the range space.

9 Find matrix representations of the linear transformations in Exercises 4.2.8 and
4.2.9 with respect to the standard bases in domain and range spaces.

I0 LetU = R3®and ¥V = R3. Let A be the representation of a linear transformation
S with respect to the standard bases. Which transformations are invertible? Find
the inverse if its exists.

1 1 1 1 1 1
@ d4=|1 -1 1 b 4= 1 -1 1
2 0 3 -1 5 -1

11 Show that the representation of a linear transformation from a finite-dimensional
domain U to a finite-dimensional range space ¥ with respect to given bases in U
and V is unique. Hint: If Y=4AXand ¥ = BX, then 0 = (4 — B)X for all

vectors X.
12 Let fbe a linear transformation from U with basis u;, uy, ..., u, to ¥ with basis
V1, ¥2,..., V.. Let g be a linear transformation from ¥ to W with basis Wy,

W2,..., W, If f has the representation 4 and g has the representation B with

i
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respect to the given bases, where A4 and B are nonsingular, show that (fo é)—l
has the representation A71B7L

44 CHANGE OF BASES

n this section, we shall again consider linear transformation with a finite-
dimensional domain and range space. If we pick a basis in the domain and a
basis in the Tange space, we shall have a unique matrix fepresentation of the
transformation. If we change the bases in the domain and the range spaces,
we shall, in general, change the representation. Our purpose is to find an easy
way to find the new representation. Our approach will be the following.
We shall first show that a change of basis in an n-dimensional vector space can
be interpreted as an invertible linear transformation from C" to C" or R" to R,
depending on whether the space is complex or real. Then we shall show that
the change of representation of a linear transformation can be obtained by
composing three linear transformations.

Theorem 4.4.1 Let U be an n-dimensional vector space with a basis
Uy, gy ooy Upe Let u}, , ..., U, be another basis for U, such that

w = pygt o+ Ptz + o Prr®s

W, = ppolly + Pz T F Pr2Un

u, = pyuy + P2+ F Prnl
if X is the column matrix of coordinates of u with respect to Uy, U, ..., U,
and X' is the column matrix of coordinates of u with respect to
u}, uh, .. ., Uy, then X' = PX, where Pisthen X n matrix with elements
py;- Also, Pis jnvertible and X = PT1X". ‘

PROOF Letu = xquy + XUy + -7 F Xl Then

u = x;(Pu“& + PagWh + * F Puat)

+ x,(psouy + Poy + 0+ Da2®)

d oo 4 X (P + Doty + 0 Drtli)
(p1aXy + PraXa+ 7 F Pra¥Xaly

+ (P21%1 + P22%2 + o PanXa)2

+ ot Py F PaXa + o0t DunXn)Ws
Xy + xpuy kot + X0,

I

Therefore,
x) = p11%y + Pro¥2 + 00t Pun¥e
Xy = PpXy + Paa¥Xz T 77 Por¥n

X, = DXy + PuaXz T 70 Pun

)
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Definition 4.4.1 Let A and B be n x »n matrices. If there exists an
invertible # x n matrix P such that B = PAP™1, then we say that B is
similar to 4 and B is obtained from 4 by a similarity transformation.

Theorem 4.4.41 Let 4, B, and C be n x n matrices. Then @ 4 is
similar to 4, for all 4, (ii) if 4 is similar to B, then B is similar to A, and
(iii) if 4 is similar to B, and B is similar to C, then A is similar to C.

PROOF (i) The n x n identity matrix is invertible, and 4 = I41~1.

(i) If 4 is similar to B, there is an invertible matrix P such that
A = PBP™'. Butthen B = P7'4P = P14(P" H=L,

(iti) If 4 is similar to B, there is an invertible matrix P such that
A = PBP~'. If Bis similar to C, there is an invertible matnx O such that
B = QCQ™'. Then

4 = PBP™!' = P(QCQ™HP™! = (PQ)C(Q~!1P™Y) = SCS~!
where S = PQ.

Some of the other important properties of similarity transformations are
given by the next theorem.

Theorem 4.4.5
@) If 4 is similar to B, then 4| = |B].

() If A4, is similar to B, and A, is similar to B, under the same
similarity transformation, then ‘4, + 4, is similar to B, + B,.

(iii) If 4 is similar to B, then 4* is similar to B* under the same similarity
transformation for any positive integer k.

(iv) If A4 is similar to B, then p(A4) is similar to p(B) under the same
similarity transformation, where p is a polynomial.}

(v) If 4 is similar to B and 4 is nonsingular, then B is nonsingular and
A1 is similar to B~ 1.

PROOF (i) There exists a nonsingular matrix P such that 4 = PBP L.

Hence [4] = lPI [BI [P7*| = [B] |P| |P™*| = |Bl, since |P| [P7!| =
[PP7Y = |1| =

(i) There exists a nonsmgular matrix P such that 4, = PB, P!
and 4, = PB,P™'. Then

4y + A, = PB,P™' + PB,P~! = P(B, + B,)P~!

F This theorem shows that similarity is an equivalence relation.
TIf AA and B are real, p is to have real coefficients; while if 4 and B are complex,
p is to have complex coefficients.
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(iiiy There exists a nonsingular matrix P such that 4 = PBP™ %,
Then A2 = (PBP™Y)(PBP~') = PR(P~*P)BP"! = P(BB)P~! = PB*P~1!
The rest follows by induction.

(iv) There is a nonsingular matrix P such that 4 = PBP~!. Let
¢ be a scalar. Then ¢4 = ¢(PBP~') = P(cB)P~*. Therefore, similarity

is preserved under multiplication by a scalar. Now let p(d) = aol + ;

ad + a,4* + -+ + a 4" Then by (ii) and (iii) of this theorem,

Pp(B)P™' = aoPIP™* 4 &PBP™* + @,PB*P™' + --- + g PBP!
= ao] + ;A + aA® + - + g d* = p(4)

(v) There is a nonsingular matrix P such that 4 = PBP™L. By-(1); -

|B] = |4] # 0. Therefore, B is nonsingular. Also 4! = (PBP™)~! =
PB~1pP~1, showing that A~ ! is similar to B~

EXERCISES 4.4

1

Let U = ¥V = R?, and let f(a) be the reflection of u in the line x = y. Find the

matrix representation of f:

(@) Relative to the standard basis in both U and 7.

(b) Relative to the standard basis in U and the basis (1,1), (1,—1)in V.

(¢) Relative to the standard basis in ¥ and the basis (1,1), (1,—1) in U.

(d) Relative to the basis (1,1), (1,— 1) in both U and V.

Let U = ¥V =.R3, and let f(u) be the reflection of u in the plane given nnplicitly

by x + y + z = 0. Find the matrix representation of f:

(a) Relative to the standard basis in both U and V.

(b) Relative to the standard basis in U and the basis (1,0,— 1), (1,-2,1), (1,1,1)
in V.

(¢) Relative to the standard basis in ¥ and the basis (1,0,—1), (1,—2,1), (1,1,1)
in U.

(d) Relative to the basis (1,0,—1), (1,—2,1), (1,1,1) in both U and V.

Show that the matrix representing the change of basis from one orthonormal set

to another in a complex vector space is a unitary matrix. -

Consider the linear transformation of Example 4.3.4. Find a vector which is

transformed into itself. Use this vector and two other vectors orthogonal to it

and to each other as a basis. Find the representation with respect to the new basis

in both domain and range space.

Show that if 4 is similar to B and A4 is nonsingular, then 4* is similar to B* for all

integers k.

Suppose A is similar to a diagonal matrix D with diagonal elements A, 4,,..., 4,

such that [A;] < 1fori=1,2,...,n Letpfd) =TI + A+ A% + --- + 4 =

P + D + D? + --- + DYP~1, since A = PDP~1, Consider lim p,(4). Show

k=0
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that this limit exists. If we denote the series I + A4 + 42 + --- by B, prove that
B = (I — A)~*. Hint: Consider lim (I — A)p4) and lim AT — AD.
k k—o0

~o -
7 Suppose A is similarto a diagonal matrix D with diagonal elements A4, Az, - - -5 An

Let
N . A
pk(A)—Ifﬁ+ET+"+ﬁ
2 K
=P(I+I—)+D—+~--+ll)1"1
1. 2v k!

since 4 = PDP~L. Show that lim py(A4) exists and is equal to
k—~ oo

et 0 0
2
2 AT R
o 0 e*n

4.5 CHARACTERISTIC VALUES AND CHARACTERISTIC
VECTORS

In this section, we consider only linear transformations for which the domain
is a subspace of the range space. Suppose the range space of f is a complex
vector space, and suppose there is a complex number A and a nonzero vector
u such that f(u) = #u. Then we say that 1. is a characteristic value (cigenvalue)
of fand u is a characteristic vector (eigenvector) of f corresponding to 7.

Definition 4.5.1 Let f be a linear transformation from the complex
(real) vector space U to ¥, where U is contained in V. Let A be a complex
(real) number and u be a nonzero vector in U such that f(u) = Au. Then
2 is a characteristic value of f, and uis a characteristic vector of f corre-

sponding to /.

EXAMPLE 4.5.1 Let f be the identity transformation from the complex
vector space U to U. Then f(@) = u, and clearly A = 1 is a characteristic
value of f with corresponding characteristic vector u # 0. Therefore, every
nonzero vector is a characteristic vector of 1.

EXAMPLE 452 Let f be the zero transformation from the complex vector
space U to U. Then f(u) = 0 = Ou, and clearly Ois a characteristic value of /
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Let us find the basis (characteristic vectors) relative to which this is the rep-.

resentation. If A = A; = 6, we must solve
X 0
z 0,

3 =3 0
-3 6 —
0 -3 3
orx —y=0,y—z=0. In other words, x = y = z and a characteristic
vectoris v, = wy + u, + w;. If 1 = 7, =79, We must solve

ST [ I

ory = 0,x + z = 0, and a corresponding characteristic vector is v, = u; — uj.

If A = A3 = 15, we must solve
-6 -3 0| /x
(—3 -3 —3) (;;) = (0
0 -3 - z 0 |

or 2x + y=0, x + y + z = 0. ‘A corresponding characteristic vector is -
Vs =1 — 2u, + u,. i

In Example 4.5.7, we had two characteristic values and only two indepen-
dent characteristic vectors in R®. Therefore, it will not always be possible to
find a diagonal representation. On the other hand, Example 4.5.6 illustrates
that there may be » independent characteristic vectors even when there are not
n distinct characteristic values. Hence, Theorem 4.5.3 gives a sufficient but not
necessary condition for a diagonal representation. In'the next section, we take
up a couple of special cases where it will always be possible to obtain a diagonal
representation. : :

EXERCISES 4.5

I Find the characteristic values and characteristic vectors of the following matrices: )

@() o) o) @(sl
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11

12

13
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Find the characteristic values and characteristic vectors of the following matrices:

310 2 1 2 5 1 1
@ (1 30 @ (o -1 3 @ {-3 1 -3
00 2 0 0 3 -2 -2 =2
/111 -8 5 4

@ lo 11 e 531

00 2 410

" Let U = V = R2, and let f(u) be the refiection of uin the line y = —x. Find all

the characteristic values and characteristic vectors of f. Find a representation of
fwhich is diagonal.

Let U = V = R3, and let f(u) be the projection of u on tl}geﬁblane‘ given implicitly
by x + 2y — z = 0. Find all the characteristic values and characteristic vectors
of £ Find a representation of f which is diagonal. )

Let U = ¥ = R®, and let f be a linear transformation with the representation
matrix relative to the standard basis

4 -20 -10
A=§-2 10 4
6 —30 -—-13

Find a basis with respect to which the representation is diagonal.

If A is a characteristic value of a square matrix 4, show that A" is a charactensuc
value of A", where n is a positive integer.

Show that a square matrix A4 is invertible if and only if A = 0is not a characteristic
value of A4.

Show that if A is a characteristic value of an invertible matrix 4, then A~* isa
characteristic value of 4~2.

If J is a characteristic value of a square matrix 4, show that A3 — 3A% + 1 — 2
is a characteristic value of 4% — 34% + 4 — 2L

If p(}) = 0 is the characteristic equation of the n x n matrix 4 and 4 has n
independent characteristic vectors Xj, Xz, .., X, prove that p(4) = 0. Hint:
Show that p(A)X; = Ofori = 1,2,.

Show that if uy, u,, ..., w; are a set of charactenstlc vectors of a hnear trans-
formation f correspondmg to the same characteristic value 4, then they span a
subspace S such that for any uin S, f(u) = Au. Note: Such subspaces are called
invariant subspaces.

Let f be a linear transformation from U to U, where U is n-dimensional. Show
that £ has a diagonal representation if and only if the sum of the dimensions of
its invariant subspaces is 7. :
Suppose we want to find a matrix C such that C2 = 4. (C might be called a
square root of 4.) Suppose A is similar to a diagonal matrix B with diagonal
elements Ay, Az, . . ., Ap With 4; = 0. Then B = PAP~1. Let D be a diagonal
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matrix with diagonal elements + \/l_l, +VAs..., + \//1_,1 Then B = D2 I;et
C = P~'DP. Show that C? = 4. Use this method to find square roots of
1 21
A=10 2 1
0 0 3
7 14 Solve the folloyving system of equations:
dx
& ox
Ju—— e . - d x y
dy
Do x4
a7

. x . . o
Hint: Letu = (y\) , and write the equations as du/df = 4u. Find P such that

v = Pu. Hence, P~ dv/dt = (AP~')v and dv/dt = (PAP~Y)v. If
PAP™ = ('El f )
then the equations are separated. ’
15 Solve the following system of equations:
dx
= =3x+
Z X z
dy
2 =3y +
dt yr
E = x+y+2
dt 7 “
16 Consider the differential equation
d*x dx
—_— =3 —4x =0
dr? dt

Look for solutions of the form x = ¢*’. Show that A must be a root of the
equation A> — 31 — 4 = 0. Show that the given equation is equivalent to the
system dx/dt = y, dy/dt = 4x + 3y. Compare with Exercise 14.

4.6 SYMMETRIC AND HERMITIAN MATRICES

We saw, in the last section, that an # x »n matrix is similar to a diagonal matrix
if and only if it has n independent characteristic vectors. We also saw square
matrices which are not similar to diagonal matrices. In this section, we shall
study two types of matrices, real symmetric and complex hermitian, which are

always similar to diagonal matrices. We shall begin with real symmetric
matrices. :
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At ¢t = 0, we have
X, = X(0) = P! = X; + X, + - + ¢ X,
c)l
wﬂere X, X, ..., X, are characteristic vectors of 4. In this case, the character-
istic vectors are independent, and therefore they form a basis for R*. No matter

what initial vector X, is prescribed, we can always find constants ¢, ¢,, . . ., C,
such that Xy = ¢ X; + ¢,X, + -+ + ¢,X,.

Lo
EXAMPLE 4.64 Find a solution of the following system of differential
equations

dx _ 2x; + 3x; + 3x,4
dt

dx

7: = 3x; — X,

d

—‘% = 3x; — X3

x,(0) = —2, x3(0) = 0. The

2 3 3
A=1(3 -1 0
3 0 -1

is real and symmetric. The characteristic equation is

satisfying the initial conditions x,(0) = 1,
system can be written as X’ = A4X, where

2—-2 3 3
3 -1-2 0 =A+DA+4H-21+5=0
3 0 -1-2
The characteristic values are A; = —1, 1, = —4, A; = 5. The corresponding

characteristic vectors are

0
X1=( 1) X,
-1

Therefore, a solution is

If

() =-(y

%) = —ce™* 4 2c;e%
%) = cle”t + ce™ 4 e
X3(t) = —ce™t + e + oz

g

.
=y
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In order for X(0) = (1,—2,0), we must have

1 0 —1 2\ /e
0 -1 1 1/ \es

“Solving, we have ¢; = —1, ¢, = —1, ¢ = 0. Our solution satisfying the

initial conditions is S
x,(t) = e™*
Xo(f) = —e™t — g™

x3(t) =

EXERCISES 4.6

1 Find similarity transformations which reduce each of the following matrices to
diagonal form:

301 4 10 4 -2 2
@ {0 2 0 ® {1 40 © (-2 1 -1
103 00 3 2 -1 1

2 Find solutions of the system of differential equations X’ = AX, where A4 is each
of the matrices of Exercise 1, subject to the initial conditions X ©) = (1,2,3).

3 Find similarity transformations which reduce each of the following matrices to
diagonal form: . .

2 0 2

1 2 2 — 2

(a)(.)(b)( .‘)(c) 0 2 o
—-i 1 2+ 2 0 o 2 4

4 Find a solution of the system of differential equations Z’ = AZ, where A is the
matrix of Exercise 3(c), subject to the initial conditions Z(0) = (i,0,).

5 Identify the figure in the xy plane given by the equation 3x2 + 2xy + 32 = 1.
Find the axes of symmetry.

6 Identify the surface in R3 given by the equation

9x% + 12)® + 922 — 6xy — 6yz = 1

Hint : An equation of the form A,x2 + A2¥* + A3z® = 1 represents an ellipsoid -
if A5, A5, A3 are all positive.

7 A quadratic form q(xy, X5, .., 2x,) = X4X, where A4 is real and symmetric, is
called positive-definite if ¢ > 0 for all X 0, Prove that g = X4X is positive-
definite if and only if all the characteristic values of A are positive.

8 Let g = XAX be a positive-definite quadratic form. Show that (X- ¥) = $4Y
is a scalar product for R”. )
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9 A hermitian form A(zs, Za, .- -5 Z0) = ZAZ, where A is hermitian, is called
positive-definite if & > 0 for all Z # 0. Prove that k = Z42 is positive-definite
if and only if all the characteristic values of A are positive.

10 Let ZAZ be a positive-definite hermitian form. Show that (Z; - Z,) = 7,47, is
a scalar product for C™.

*47 JORDAN FORMS

Theorem 4.5.2 gives necessary and sufficient conditions for an n X n matrix
to be similar to a diagonal matrix, namely that it should have » independent
characteristic vectors. We have also seen square matrices which are similar
to no diagonal matnx. In this section, we shall discuss the so-called Jordan
canonical form, a form of matrix to which every square matrix is similar. The
Jordan form is not quite as simple as a diagonal matrix but is nevertheless
simple enough to make it very applicable, particularly in the solution of systems
of differential equations.

Before we embark upon the discussion of Jordan forms, it will be con-
venient to introduce the concept of partitioning of matrices. - Suppose we write

(¢ 3)

where 4 is an m x nmatrix, Bisanm X p matrix, Cis a ¢ X n matrix, and
D is a ¢ x p matrix. In other words, M is an (m + ¢) x (n + p) matrix
partitioned into blocks of matrices so that each block in a given row has the
same number of rows and each block in a given column has the same number
of columns. The reader should convince himself that the following product
rule is valid for partitioned matrices. Let

Ay A A By, By Blp
et A ) g | T P T
Ami Am2 A By Ba B,

Then
Ci Ci Cip
PQ = Cyy Gy Csp
N Cui Cumz " Cmp

where C;; = . AuBy; provided P and Q are partitioned in such a way that
k=1

Ay, has the same number of columns as By; has rows for all i, j, and k.

v

— g




